These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35280957)

  • 1. Identification of Human Walking Balance Controller Based on COM-ZMP Model of Humanoid Robot.
    Yoshikawa T
    Front Robot AI; 2022; 9():757630. PubMed ID: 35280957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical analysis of the state of balance in bipedal walking.
    Firmani F; Park EJ
    J Biomech Eng; 2013 Apr; 135(4):041003. PubMed ID: 24231898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Robust Balance-Control Framework for the Terrain-Blind Bipedal Walking of a Humanoid Robot on Unknown and Uneven Terrain.
    Joe HM; Oh JH
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot.
    Or J
    Neural Netw; 2010 Apr; 23(3):452-60. PubMed ID: 20031370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kid-size robot humanoid walking with heel-contact and toe-off motion.
    Wu Y; Pan Y; Leng X; He Z
    PeerJ Comput Sci; 2022; 7():e797. PubMed ID: 35493066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust Walking for Humanoid Robot Based on Divergent Component of Motion.
    Zhang Z; Zhang L; Xin S; Xiao N; Wen X
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imitation of Dynamic Walking With BSN for Humanoid Robot.
    Teachasrisaksakul K; Zhang ZQ; Yang GZ; Lo B
    IEEE J Biomed Health Inform; 2015 May; 19(3):794-802. PubMed ID: 25935051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foot placement modification for a biped humanoid robot with narrow feet.
    Hashimoto K; Hattori K; Otani T; Lim HO; Takanishi A
    ScientificWorldJournal; 2014; 2014():259570. PubMed ID: 24592154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle Swarm Optimization aided PID gait controller design for a humanoid robot.
    Kashyap AK; Parhi DR
    ISA Trans; 2021 Aug; 114():306-330. PubMed ID: 33358185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Investigations into Using Motion Capture State Feedback for Real-Time Control of a Humanoid Robot.
    Popescu M; Mronga D; Bergonzani I; Kumar S; Kirchner F
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From Walking to Running: 3D Humanoid Gait Generation via MPC.
    Smaldone FM; Scianca N; Lanari L; Oriolo G
    Front Robot AI; 2022; 9():876613. PubMed ID: 36081844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanics of Step Initiation After Balance Recovery With Implications for Humanoid Robot Locomotion.
    Miller Buffinton C; Buffinton EM; Bieryla KA; Pratt JE
    J Biomech Eng; 2016 Mar; 138(3):4032468. PubMed ID: 26769330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gyro-Sensor-Based Vibration Control for Dynamic Humanoid-Robot Walking on Inclined Surfaces.
    Dutta S; Miura-Mattausch M; Ochi Y; Yorino N; Mattausch HJ
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capture Point-Based Controller Using Real-Time Zero Moment Point Manipulation for Stable Bipedal Walking in Human Environment.
    Hong YD
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carved Turn Control with Gate Vision Recognition of a Humanoid Robot for Giant Slalom Skiing on Ski Slopes.
    Park C; Kim B; Kim Y; Eum Y; Song H; Yoon D; Moon J; Han J
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biped Walking Based on Stiffness Optimization and Hierarchical Quadratic Programming.
    Shi X; Gao J; Lu Y; Tian D; Liu Y
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33801179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research on Walking Gait Planning and Simulation of a Novel Hybrid Biped Robot.
    Sun P; Gu Y; Mao H; Chen Z; Li Y
    Biomimetics (Basel); 2023 Jun; 8(2):. PubMed ID: 37366853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Phase Joint-Angle Trajectory Generation Inspired by Dog Motion for Control of Quadruped Robot.
    Choi J
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous gait phase synchronization of human to a wheeled mobile robot with replicating gait-induced upper body oscillating motion.
    Yagi S; Nakata Y; Nakamura Y; Ishiguro H
    Sci Rep; 2022 Sep; 12(1):16275. PubMed ID: 36175591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.