These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35280972)

  • 1. Cellulosic biofilm formation of
    Subbiahdoss G; Osmen S; Reimhult E
    Biofilm; 2022 Dec; 4():100071. PubMed ID: 35280972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofilm formation at oil-water interfaces is not a simple function of bacterial hydrophobicity.
    Subbiahdoss G; Reimhult E
    Colloids Surf B Biointerfaces; 2020 Oct; 194():111163. PubMed ID: 32554257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient
    Bertsch P; Etter D; Fischer P
    Food Funct; 2021 May; 12(9):4015-4020. PubMed ID: 33978026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studying bacterial hydrophobicity and biofilm formation at liquid-liquid interfaces through interfacial rheology and pendant drop tensiometry.
    Rühs PA; Böcker L; Inglis RF; Fischer P
    Colloids Surf B Biointerfaces; 2014 May; 117():174-84. PubMed ID: 24632390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial Diversity and Interaction Specificity in Kombucha Tea Fermentations.
    Landis EA; Fogarty E; Edwards JC; Popa O; Eren AM; Wolfe BE
    mSystems; 2022 Jun; 7(3):e0015722. PubMed ID: 35670539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbiological and Physico-Chemical Characteristics of Black Tea Kombucha Fermented with a New Zealand Starter Culture.
    Wang B; Rutherfurd-Markwick K; Naren N; Zhang XX; Mutukumira AN
    Foods; 2023 Jun; 12(12):. PubMed ID: 37372525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shedding Light on the Formation and Structure of Kombucha Biofilm Using Two-Photon Fluorescence Microscopy.
    Tran T; Grandvalet C; Winckler P; Verdier F; Martin A; Alexandre H; Tourdot-Maréchal R
    Front Microbiol; 2021; 12():725379. PubMed ID: 34421883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior of Marine Bacteria in Clean Environment and Oil Spill Conditions.
    Godfrin MP; Sihlabela M; Bose A; Tripathi A
    Langmuir; 2018 Jul; 34(30):9047-9053. PubMed ID: 29974750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial Composition of SCOBY Starter Cultures Used by Commercial Kombucha Brewers in North America.
    Harrison K; Curtin C
    Microorganisms; 2021 May; 9(5):. PubMed ID: 34068887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailor-made microbial consortium for Kombucha fermentation: Microbiota-induced biochemical changes and biofilm formation.
    Savary O; Mounier J; Thierry A; Poirier E; Jourdren J; Maillard MB; Penland M; Decamps C; Coton E; Coton M
    Food Res Int; 2021 Sep; 147():110549. PubMed ID: 34399526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbiome composition of kombucha tea from Türkiye using high-throughput sequencing.
    Kahraman-Ilıkkan Ö
    J Food Sci Technol; 2023 Jun; 60(6):1826-1833. PubMed ID: 37187981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha.
    Semjonovs P; Ruklisha M; Paegle L; Saka M; Treimane R; Skute M; Rozenberga L; Vikele L; Sabovics M; Cleenwerck I
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1003-1012. PubMed ID: 27678116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Particulate Contaminants on the Development of Biofilms at Air/Water Interfaces.
    Zhang Z; Christopher G
    Langmuir; 2016 Mar; 32(11):2724-30. PubMed ID: 26943272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples.
    Marsh AJ; O'Sullivan O; Hill C; Ross RP; Cotter PD
    Food Microbiol; 2014 Apr; 38():171-8. PubMed ID: 24290641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Techno-economic feasibility assessment of bacterial cellulose biofilm production during the Kombucha fermentation process.
    Behera B; Laavanya D; Balasubramanian P
    Bioresour Technol; 2022 Feb; 346():126659. PubMed ID: 34974103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial cellulose films production by Kombucha symbiotic community cultured on different herbal infusions.
    Ramírez Tapias YA; Di Monte MV; Peltzer MA; Salvay AG
    Food Chem; 2022 Mar; 372():131346. PubMed ID: 34818748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in the Production of Biomaterials through Kombucha Using Food Waste: Concepts, Challenges, and Potential.
    Cubas ALV; Provin AP; Dutra ARA; Mouro C; Gouveia IC
    Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic and mechanical evolution of an oil-water interface during bacterial biofilm formation.
    Rivas DP; Hedgecock ND; Stebe KJ; Leheny RL
    Soft Matter; 2021 Sep; 17(35):8195-8210. PubMed ID: 34525167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do Kombucha Symbiotic Cultures of Bacteria and Yeast Affect Bacterial Cellulose Yield in Molasses?
    Devanthi PVP; Kho K; Nurdiansyah R; Briot A; Taherzadeh MJ; Aslanzadeh S
    J Fungi (Basel); 2021 Aug; 7(9):. PubMed ID: 34575743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated abundance of
    Ohwofasa A; Dhami M; Winefield C; On SLW
    Curr Res Food Sci; 2024; 8():100694. PubMed ID: 38420346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.