These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 3528110)

  • 1. Identification and grouping of Clostridium botulinum strains by numerical analysis of their electrophoretic protein patterns.
    Bom IJ; Smelt JP; Kersters K; Verrips CT
    J Appl Bacteriol; 1986 Jun; 60(6):483-90. PubMed ID: 3528110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Soluble proteins of the vegetative cells and spores of Clostridium botulinum type B and their toxicity].
    Nikolaeva SA
    Prikl Biokhim Mikrobiol; 1976; 12(3):449-53. PubMed ID: 792871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of proteolytic Clostridium botulinum strains, determined by a pulsed-field gel electrophoresis approach.
    Nevas M; Lindström M; Hielm S; Björkroth KJ; Peck MW; Korkeala H
    Appl Environ Microbiol; 2005 Mar; 71(3):1311-7. PubMed ID: 15746333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and grouping of bacteria by numerical analysis of their electrophoretic protein patterns.
    Kersters K; De Ley J
    J Gen Microbiol; 1975 Apr; 87(2):333-42. PubMed ID: 1141858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biology and genomic analysis of Clostridium botulinum.
    Peck MW
    Adv Microb Physiol; 2009; 55():183-265, 320. PubMed ID: 19573697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of sporulation medium and its divalent cation content on the heat and high pressure resistance of Clostridium botulinum type E spores.
    Lenz CA; Vogel RF
    Food Microbiol; 2014 Dec; 44():156-67. PubMed ID: 25084658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunofluorescent study of the spore antigens of proteolytic strains of Clostridium botulinum.
    Princewill TJ
    J Hyg (Lond); 1979 Aug; 83(1):1-9. PubMed ID: 379206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of sporulation temperature on the high pressure resistance of Clostridium botulinum type E spores and the interconnection with sporulation medium cation contents.
    Lenz CA; Vogel RF
    Food Microbiol; 2015 Apr; 46():434-442. PubMed ID: 25475313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sporulation and C2 toxin production by Clostridium botulinum type C strains producing no C1 toxin.
    Nakamura S; Serikawa T; Yamakawa K; Nishida S; Kozaki S; Sakaguchi G
    Microbiol Immunol; 1978; 22(10):591-6. PubMed ID: 368526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Clostridium botulinum with API 20 A, Rapid ID 32 A and RapID ANA II.
    Lindström MK; Jankola HM; Hielm S; Hyytiä EK; Korkeala HJ
    FEMS Immunol Med Microbiol; 1999 Jul; 24(3):267-74. PubMed ID: 10397310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meta-analysis of D-values of proteolytic Clostridium botulinum and its surrogate strain Clostridium sporogenes PA 3679.
    Diao MM; André S; Membré JM
    Int J Food Microbiol; 2014 Mar; 174():23-30. PubMed ID: 24448274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the spore surface and exosporium proteins of Clostridium sporogenes; implications for Clostridium botulinum group I strains.
    Janganan TK; Mullin N; Tzokov SB; Stringer S; Fagan RP; Hobbs JK; Moir A; Bullough PA
    Food Microbiol; 2016 Oct; 59():205-12. PubMed ID: 27375261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection limit of Clostridium botulinum spores in dried mushroom samples sourced from China.
    Malakar PK; Plowman J; Aldus CF; Xing Z; Zhao Y; Peck MW
    Int J Food Microbiol; 2013 Aug; 166(1):72-6. PubMed ID: 23838282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clostridium sporogenes isolates and their relationship to C. botulinum based on deoxyribonucleic acid reassociation.
    Nakamura S; Okado I; Nakashio S; Nishida S
    J Gen Microbiol; 1977 Jun; 100(2):395-401. PubMed ID: 330814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry.
    Gibson AM; Bratchell N; Roberts TA
    J Appl Bacteriol; 1987 Jun; 62(6):479-90. PubMed ID: 3305458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer-aided densitometric analysis of protein patterns of Clostridium difficile.
    Ehret W; Turba M; Pfaller P; Heizmann W; Ruckdeschel G
    Eur J Clin Microbiol Infect Dis; 1988 Apr; 7(2):285-90. PubMed ID: 3134233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of Clostridium botulinum types A, B, and E by pyrolysis-gas-liquid chromatography.
    Cone RD; Lechowich RV
    Appl Microbiol; 1970 Jan; 19(1):138-45. PubMed ID: 4905944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The combined effect of incubation temperature, pH and sorbic acid on the probability of growth of non-proteolytic, type B Clostridium botulinum.
    Lund BM; Graham AF; George SM; Brown D
    J Appl Bacteriol; 1990 Oct; 69(4):481-92. PubMed ID: 2292514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of nutrients on physiological properties of Clostridium botulinum type E.
    Gullmar B; Molin N
    J Bacteriol; 1967 Dec; 94(6):1924-9. PubMed ID: 4864406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of four Clostridium botulinum strains identifies proteins that link biological responses to proteomic signatures.
    Deatherage Kaiser BL; Hill KK; Smith TJ; Williamson CHD; Keim P; Sahl JW; Wahl KL
    PLoS One; 2018; 13(10):e0205586. PubMed ID: 30321210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.