BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 35281718)

  • 1. Novel Hybrid Brain-Computer Interface for Virtual Reality Applications Using Steady-State Visual-Evoked Potential-Based Brain-Computer Interface and Electrooculogram-Based Eye Tracking for Increased Information Transfer Rate.
    Ha J; Park S; Im CH
    Front Neuroinform; 2022; 16():758537. PubMed ID: 35281718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Visual Stimuli for Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces in Virtual Reality Environment in terms of Classification Accuracy and Visual Comfort.
    Choi KM; Park S; Im CH
    Comput Intell Neurosci; 2019; 2019():9680697. PubMed ID: 31354804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of stereo-dependent SSVEP targets and their impact on VR-BCI performance.
    Liu H; Wang Z; Li R; Zhao X; Xu T; Zhou T; Hu H
    Front Neurosci; 2024; 18():1367932. PubMed ID: 38660227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facial Motion Capture System Based on Facial Electromyogram and Electrooculogram for Immersive Social Virtual Reality Applications.
    Kim C; Cha HS; Kim J; Kwak H; Lee W; Im CH
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-Approaching Stimulation Sequence for SSVEP-Based BCI: A Practical Use in VR/AR HMD.
    Hsu HT; Shyu KK; Hsu CC; Lee LH; Lee PL
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2754-2764. PubMed ID: 34847036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of stimulus number on the recognition accuracy and information transfer rate of SSVEP-BCI in augmented reality.
    Zhang R; Xu Z; Zhang L; Cao L; Hu Y; Lu B; Shi L; Yao D; Zhao X
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35477130
    [No Abstract]   [Full Text] [Related]  

  • 7. Influence of the Number of Channels and Classification Algorithm on the Performance Robustness to Electrode Shift in Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces.
    Kim H; Im CH
    Front Neuroinform; 2021; 15():750839. PubMed ID: 34744677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel hybrid visual stimuli incorporating periodic motions into conventional flickering or pattern-reversal visual stimuli for steady-state visual evoked potential-based brain-computer interfaces.
    Kwon J; Hwang J; Nam H; Im CH
    Front Neuroinform; 2022; 16():997068. PubMed ID: 36213545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single stimulus location for two inputs: A combined brain-computer interface based on Steady-State Visual Evoked Potential (SSVEP).
    Wang L; Zhang Z; Han D; Zhang Z; Liu Z; Liu W
    Eur J Neurosci; 2021 Feb; 53(3):861-875. PubMed ID: 33128787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An autonomous hybrid brain-computer interface system combined with eye-tracking in virtual environment.
    Tan Y; Lin Y; Zang B; Gao X; Yong Y; Yang J; Li S
    J Neurosci Methods; 2022 Feb; 368():109442. PubMed ID: 34915046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A robotic arm control system with simultaneous and sequential modes combining eye-tracking with steady-state visual evoked potential in virtual reality environment.
    Guo R; Lin Y; Luo X; Gao X; Zhang S
    Front Neurorobot; 2023; 17():1146415. PubMed ID: 37051328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing spatial properties of a new checkerboard-like visual stimulus for user-friendly SSVEP-based BCIs.
    Ming G; Pei W; Chen H; Gao X; Wang Y
    J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34544060
    [No Abstract]   [Full Text] [Related]  

  • 13. Implementing a calibration-free SSVEP-based BCI system with 160 targets.
    Chen Y; Yang C; Ye X; Chen X; Wang Y; Gao X
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34134091
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of 3D paradigm synchronous motion for SSVEP-based hybrid BCI-VR system.
    Niu L; Bin J; Wang JKS; Zhan G; Jia J; Zhang L; Gan Z; Kang X
    Med Biol Eng Comput; 2023 Sep; 61(9):2481-2495. PubMed ID: 37191865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Hybrid Asynchronous Brain-Computer Interface Combining SSVEP and EOG Signals.
    Zhou Y; He S; Huang Q; Li Y
    IEEE Trans Biomed Eng; 2020 Oct; 67(10):2881-2892. PubMed ID: 32070938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces.
    Zhu F; Jiang L; Dong G; Gao X; Wang Y
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Hybrid Mental Spelling Application Based on Eye Tracking and SSVEP-Based BCI.
    Stawicki P; Gembler F; Rezeika A; Volosyak I
    Brain Sci; 2017 Apr; 7(4):. PubMed ID: 28379187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of high-frequency steady-state visual evoked potentials from below-the-hairline areas for a brain-computer interface based on Depth-of-Field.
    Floriano A; Delisle-Rodriguez D; Diez PF; Bastos-Filho TF
    Comput Methods Programs Biomed; 2020 Feb; 184():105271. PubMed ID: 31881401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Hybrid Speller Design Using Eye Tracking and SSVEP Brain-Computer Interface.
    Mannan MMN; Kamran MA; Kang S; Choi HS; Jeong MY
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.