BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35281751)

  • 1. Viability of compact cities in the post-COVID-19 era: subway ridership variations in Seoul Korea.
    Kwon D; Oh SES; Choi S; Kim BHS
    Ann Reg Sci; 2022 Mar; ():1-29. PubMed ID: 35281751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Stationary Time Series Model for Station-Based Subway Ridership During COVID-19 Pandemic: Case Study of New York City.
    Moghimi B; Kamga C; Safikhani A; Mudigonda S; Vicuna P
    Transp Res Rec; 2023 Apr; 2677(4):463-477. PubMed ID: 37153164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in Subway Ridership in Response to COVID-19 in Seoul, South Korea: Implications for Social Distancing.
    Park J
    Cureus; 2020 Apr; 12(4):e7668. PubMed ID: 32313784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Unequal Effects of Social Distancing Policy on Subway Ridership during the COVID-19 Pandemic in Seoul, South Korea.
    Ha J; Jo S; Nam HK; Cho SI
    J Urban Health; 2022 Feb; 99(1):77-81. PubMed ID: 34973127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the subway attraction for the post-COVID-19 era: The role of fare-free public transport policy.
    Dai J; Liu Z; Li R
    Transp Policy (Oxf); 2021 Mar; 103():21-30. PubMed ID: 36570709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Socioeconomic disparities in subway use and COVID-19 outcomes in New York City.
    Sy KTL; Martinez ME; Rader B; White LF
    medRxiv; 2020 May; ():. PubMed ID: 32511568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Station-Level Effects of the COVID-19 Pandemic on Subway Ridership in the Seoul Metropolitan Area.
    Jun MJ; Yun MY
    Transp Res Rec; 2023 Apr; 2677(4):802-812. PubMed ID: 37153174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The link between bike sharing and subway use during the COVID-19 pandemic: The case-study of New York's Citi Bike.
    Teixeira JF; Lopes M
    Transp Res Interdiscip Perspect; 2020 Jul; 6():100166. PubMed ID: 34173457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bikeshare and subway ridership changes during the COVID-19 pandemic in New York City.
    Wang H; Noland RB
    Transp Policy (Oxf); 2021 Jun; 106():262-270. PubMed ID: 34975237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of COVID-19 on urban rail transit ridership using the Synthetic Control Method.
    Xin M; Shalaby A; Feng S; Zhao H
    Transp Policy (Oxf); 2021 Sep; 111():1-16. PubMed ID: 36568355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal dynamics of public transportation ridership in Seoul before, during, and after COVID-19 from urban resilience perspective.
    Lee S; Kim J; Cho K
    Sci Rep; 2024 Apr; 14(1):8981. PubMed ID: 38637570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining factors affecting public bike ridership and its spatial change before and after COVID-19.
    Kim J; Lee S
    Travel Behav Soc; 2023 Apr; 31():24-36. PubMed ID: 36405768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examination of New York City Transit's Bus and Subway Ridership Trends During the COVID-19 Pandemic.
    Halvorsen A; Wood D; Jefferson D; Stasko T; Hui J; Reddy A
    Transp Res Rec; 2023 Apr; 2677(4):51-64. PubMed ID: 37153176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neighborhood, built environment and resilience in transportation during the COVID-19 pandemic.
    Xiao W; Wei YD; Wu Y
    Transp Res D Transp Environ; 2022 Sep; 110():103428. PubMed ID: 35975170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. COVID-19 and the compact city: Implications for well-being and sustainable urban planning.
    Mouratidis K
    Sci Total Environ; 2022 Mar; 811():152332. PubMed ID: 34914991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of COVID-19 on bike-sharing usages in Seoul, South Korea.
    Jiao J; Lee HK; Choi SJ
    Cities; 2022 Nov; 130():103849. PubMed ID: 35991508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring urban polycentricity from the variability in human mobility patterns.
    Cabrera-Arnau C; Zhong C; Batty M; Silva R; Kang SM
    Sci Rep; 2023 Apr; 13(1):5751. PubMed ID: 37029277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subway Ridership, Crowding, or Population Density: Determinants of COVID-19 Infection Rates in New York City.
    Hamidi S; Hamidi I
    Am J Prev Med; 2021 May; 60(5):614-620. PubMed ID: 33888260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial co-location patterns between early COVID-19 risk and urban facilities: a case study of Wuhan, China.
    Zhi G; Meng B; Lin H; Zhang X; Xu M; Chen S; Wang J
    Front Public Health; 2023; 11():1293888. PubMed ID: 38239800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial Characteristics of the Diffusion of Residential Solar Photovoltaics in Urban Areas: A Case of Seoul, South Korea.
    Kim MH; Gim TT
    Int J Environ Res Public Health; 2021 Jan; 18(2):. PubMed ID: 33451153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.