BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 35282033)

  • 1. Microfluidics-enabled functional 3D printing.
    Mea H; Wan J
    Biomicrofluidics; 2022 Mar; 16(2):021501. PubMed ID: 35282033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printing: An Alternative Microfabrication Approach with Unprecedented Opportunities in Design.
    Balakrishnan HK; Badar F; Doeven EH; Novak JI; Merenda A; Dumée LF; Loy J; Guijt RM
    Anal Chem; 2021 Jan; 93(1):350-366. PubMed ID: 33263392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidics: A New Layer of Control for Extrusion-Based 3D Printing.
    Serex L; Bertsch A; Renaud P
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging 3D printing technologies and methodologies for microfluidic development.
    Monia Kabandana GK; Zhang T; Chen C
    Anal Methods; 2022 Aug; 14(30):2885-2906. PubMed ID: 35866586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic phase control with printing and fluidic materials' interaction by inkjet printing an RF sensor directly on a stereolithographic 3D printed microfluidic structure.
    Park E; Lim S
    Lab Chip; 2021 Nov; 21(22):4364-4378. PubMed ID: 34585708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional-printing for microfluidics or the other way around?
    Zhang Y
    Int J Bioprint; 2019; 5(2):192. PubMed ID: 32596534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review.
    Gyimah N; Scheler O; Rang T; Pardy T
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33810056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-Printing of Functional Biomedical Microdevices via Light- and Extrusion-Based Approaches.
    Hwang HH; Zhu W; Victorine G; Lawrence N; Chen S
    Small Methods; 2018 Feb; 2(2):. PubMed ID: 30090851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing Solutions for Microfluidic Chip-To-World Connections.
    van den Driesche S; Lucklum F; Bunge F; Vellekoop MJ
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Microfluidic Devices for Emulsion Formation by Microstereolithography.
    Männel MJ; Baysak E; Thiele J
    Molecules; 2021 May; 26(9):. PubMed ID: 34068649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward Multiscale, Multimaterial 3D Printing.
    Zhu C; Gemeda HB; Duoss EB; Spadaccini CM
    Adv Mater; 2024 May; ():e2314204. PubMed ID: 38775924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms.
    Macdonald NP; Cabot JM; Smejkal P; Guijt RM; Paull B; Breadmore MC
    Anal Chem; 2017 Apr; 89(7):3858-3866. PubMed ID: 28281349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging Technologies and Materials for High-Resolution 3D Printing of Microfluidic Chips.
    Kotz F; Helmer D; Rapp BE
    Adv Biochem Eng Biotechnol; 2022; 179():37-66. PubMed ID: 32797271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printed microfluidic devices: enablers and barriers.
    Waheed S; Cabot JM; Macdonald NP; Lewis T; Guijt RM; Paull B; Breadmore MC
    Lab Chip; 2016 May; 16(11):1993-2013. PubMed ID: 27146365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printing for the integration of porous materials into miniaturised fluidic devices: A review.
    Balakrishnan HK; Doeven EH; Merenda A; Dumée LF; Guijt RM
    Anal Chim Acta; 2021 Nov; 1185():338796. PubMed ID: 34711329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printed self-supporting elastomeric structures for multifunctional microfluidics.
    Su R; Wen J; Su Q; Wiederoder MS; Koester SJ; Uzarski JR; McAlpine MC
    Sci Adv; 2020 Oct; 6(41):. PubMed ID: 33036980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Custom-Made 3D Printing Protocol with Commercial Resins for Manufacturing Microfluidic Devices.
    Subirada F; Paoli R; Sierra-Agudelo J; Lagunas A; Rodriguez-Trujillo R; Samitier J
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printed microfluidic circuitry via multijet-based additive manufacturing.
    Sochol RD; Sweet E; Glick CC; Venkatesh S; Avetisyan A; Ekman KF; Raulinaitis A; Tsai A; Wienkers A; Korner K; Hanson K; Long A; Hightower BJ; Slatton G; Burnett DC; Massey TL; Iwai K; Lee LP; Pister KS; Lin L
    Lab Chip; 2016 Feb; 16(4):668-78. PubMed ID: 26725379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Centrifugation-Assisted Three-Dimensional Printing of Devices Embedded with Fully Enclosed Microchannels.
    Chu CH; Burentugs E; Lee D; Owens JM; Liu R; Frazier AB; Sarioglu AF
    3D Print Addit Manuf; 2023 Aug; 10(4):609-618. PubMed ID: 37609578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.