These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 35282175)

  • 1. Smartphone Sensor Dataset for Driver Behavior Analysis.
    Wawage P; Deshpande Y
    Data Brief; 2022 Apr; 41():107992. PubMed ID: 35282175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Driver behavior profiling: An investigation with different smartphone sensors and machine learning.
    Ferreira J; Carvalho E; Ferreira BV; de Souza C; Suhara Y; Pentland A; Pessin G
    PLoS One; 2017; 12(4):e0174959. PubMed ID: 28394925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Driving event recognition using machine learning and smartphones.
    Bin Jamal Mohd Lokman EH; Goh VT; Yap TTV; Ng H
    F1000Res; 2022; 11():57. PubMed ID: 37082303
    [No Abstract]   [Full Text] [Related]  

  • 4. Driver Fatigue Detection Systems Using Multi-Sensors, Smartphone, and Cloud-Based Computing Platforms: A Comparative Analysis.
    Abbas Q; Alsheddy A
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FruitNet: Indian fruits image dataset with quality for machine learning applications.
    Meshram V; Patil K
    Data Brief; 2022 Feb; 40():107686. PubMed ID: 34917715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creation of the Naturalistic Engagement in Secondary Tasks (NEST) distracted driving dataset.
    Owens JM; Angell L; Hankey JM; Foley J; Ebe K
    J Safety Res; 2015 Sep; 54():33-6. PubMed ID: 26403898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate Driver Detection Exploiting Invariant Characteristics of Smartphone Sensors.
    Ahn D; Park H; Shin K; Park T
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31212672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Machine-Learning Approach to Distinguish Passengers and Drivers Reading While Driving.
    Torres R; Ohashi O; Pessin G
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31330929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning Estimation of COVID-19 Social Distance using Smartphone Sensor Data.
    Semenov O; Agu E; Pahlavan K
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4452-4457. PubMed ID: 34892208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vehicle Mode and Driving Activity Detection Based on Analyzing Sensor Data of Smartphones.
    Lu DN; Nguyen DN; Nguyen TH; Nguyen HN
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29596397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profiling drivers to assess safe and eco-driving behavior - A systematic review of naturalistic driving studies.
    Singh H; Kathuria A
    Accid Anal Prev; 2021 Oct; 161():106349. PubMed ID: 34411805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel GMM-Based Behavioral Modeling Approach for Smartwatch-Based Driver Authentication.
    Yang CH; Chang CC; Liang D
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29597285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Driver distraction by smartphone use (WhatsApp) in different age groups.
    Ortiz C; Ortiz-Peregrina S; Castro JJ; Casares-López M; Salas C
    Accid Anal Prev; 2018 Aug; 117():239-249. PubMed ID: 29723735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary Behavior of Drivers on Cell Phones.
    Farmer CM; Klauer SG; McClafferty JA; Guo F
    Traffic Inj Prev; 2015; 16(8):801-8. PubMed ID: 25793432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic distracted driving (SynDD1) dataset for analyzing distracted behaviors and various gaze zones of a driver.
    Rahman MS; Venkatachalapathy A; Sharma A; Wang J; Gursoy SV; Anastasiu D; Wang S
    Data Brief; 2023 Feb; 46():108793. PubMed ID: 36506800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Public Domain Dataset for Real-Life Human Activity Recognition Using Smartphone Sensors.
    Garcia-Gonzalez D; Rivero D; Fernandez-Blanco E; Luaces MR
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VegNet: Dataset of vegetable quality images for machine learning applications.
    Suryawanshi Y; Patil K; Chumchu P
    Data Brief; 2022 Dec; 45():108657. PubMed ID: 36426086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Navigating Virtual Environments Using Leg Poses and Smartphone Sensors.
    Tsaramirsis G; Buhari SM; Basheri M; Stojmenovic M
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30642131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress Detection via Keyboard Typing Behaviors by Using Smartphone Sensors and Machine Learning Techniques.
    Sağbaş EA; Korukoglu S; Balli S
    J Med Syst; 2020 Feb; 44(4):68. PubMed ID: 32072331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature-Free Activity Classification of Inertial Sensor Data With Machine Vision Techniques: Method, Development, and Evaluation.
    Dominguez Veiga JJ; O'Reilly M; Whelan D; Caulfield B; Ward TE
    JMIR Mhealth Uhealth; 2017 Aug; 5(8):e115. PubMed ID: 28778851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.