BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35282630)

  • 1. Enhancing the photothermal conversion of tetrathiafulvalene-based MOFs by redox doping and plasmon resonance.
    Su J; Cai P; Yan T; Yang ZM; Yuan S; Zuo JL; Zhou HC
    Chem Sci; 2022 Feb; 13(6):1657-1664. PubMed ID: 35282630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge Transfer Metal-Organic Framework Containing Redox-Active TTF/NDI Units for Highly Efficient Near-Infrared Photothermal Conversion.
    Yan T; Li YY; Su J; Wang HY; Zuo JL
    Chemistry; 2021 Aug; 27(43):11050-11055. PubMed ID: 33988893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persistent Radical Tetrathiafulvalene-Based 2D Metal-Organic Frameworks and Their Application in Efficient Photothermal Conversion.
    Su J; Xu N; Murase R; Yang ZM; D'Alessandro DM; Zuo JL; Zhu J
    Angew Chem Int Ed Engl; 2021 Feb; 60(9):4789-4795. PubMed ID: 33236501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox Activities of Metal-Organic Frameworks Incorporating Rare-Earth Metal Chains and Tetrathiafulvalene Linkers.
    Su J; Hu TH; Murase R; Wang HY; D'Alessandro DM; Kurmoo M; Zuo JL
    Inorg Chem; 2019 Mar; 58(6):3698-3706. PubMed ID: 30830770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox-Active Metal-Organic Frameworks with Three-Dimensional Lattice Containing the
    Huang H; Yang ZM; Zhou XC; Zhang G; Su J
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zirconium metal-organic frameworks incorporating tetrathiafulvalene linkers: robust and redox-active matrices for
    Su J; Yuan S; Wang T; Lollar CT; Zuo JL; Zhang J; Zhou HC
    Chem Sci; 2020 Jan; 11(7):1918-1925. PubMed ID: 34123285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accessible Tetrathiafulvalene Moieties in a 3D Covalent Organic Framework for Enhanced Near-Infrared Photo-Thermal Conversion and Photo-Electrical Response.
    Ma TR; Ge F; Ke SW; Lv S; Yang ZM; Zhou XC; Liu C; Wu XJ; Yuan S; Zuo JL
    Small; 2024 Apr; 20(14):e2308013. PubMed ID: 37988642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Tetrathiafulvalene/Naphthalene Diimide-Containing Metal-Organic Framework with
    Yan T; Li YY; Gu QY; Li J; Su J; Wang HY; Zuo JL
    Inorg Chem; 2022 Feb; 61(7):3078-3085. PubMed ID: 35142506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rare-Earth Metal Tetrathiafulvalene Carboxylate Frameworks as Redox-Switchable Single-Molecule Magnets.
    Su J; Yuan S; Li J; Wang HY; Ge JY; Drake HF; Leong CF; Yu F; D'Alessandro DM; Kurmoo M; Zuo JL; Zhou HC
    Chemistry; 2021 Jan; 27(2):622-627. PubMed ID: 33191540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating Tetrathiafulvalene and Nickel-Bis(dithiolene) Units into Donor-Acceptor Covalent Organic Frameworks for Stable and Efficient Photothermal Conversion.
    Li YY; Wei T; Liu C; Zhang Z; Wu LF; Ding M; Yuan S; Zhu J; Zuo JL
    Chemistry; 2023 Jun; 29(34):e202301048. PubMed ID: 37022345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NIR-II photothermal conversion and imaging based on a cocrystal containing twisted components.
    Li T; Liu JC; Liu EP; Liu BT; Wang JY; Liao PY; Jia JH; Feng Y; Tong ML
    Chem Sci; 2024 Jan; 15(5):1692-1699. PubMed ID: 38303953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A family of lanthanide metal-organic frameworks based on a redox-active tetrathiafulvalene-dicarboxylate ligand showing slow relaxation of magnetisation and electronic conductivity.
    Hu JJ; Li YG; Wen HR; Liu SJ; Peng Y; Liu CM
    Dalton Trans; 2021 Oct; 50(41):14714-14723. PubMed ID: 34586106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-switchable breathing behavior in tetrathiafulvalene-based metal-organic frameworks.
    Su J; Yuan S; Wang HY; Huang L; Ge JY; Joseph E; Qin J; Cagin T; Zuo JL; Zhou HC
    Nat Commun; 2017 Dec; 8(1):2008. PubMed ID: 29222485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ag@TiO
    Nie C; Du P; Zhao H; Xie H; Li Y; Yao L; Shi Y; Hu L; Si S; Zhang M; Gu J; Luo L; Sun Z
    Chem Asian J; 2020 Jan; 15(1):148-155. PubMed ID: 31802635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-Dependent Photothermal Conversion and Photoluminescence of Theranostic NaNdF
    Ding L; Ren F; Liu Z; Jiang Z; Yun B; Sun Q; Li Z
    Bioconjug Chem; 2020 Feb; 31(2):340-351. PubMed ID: 31751118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetrathiafulvalene-Cobalt Metal-Organic Frameworks for Lithium-Ion Batteries with Superb Rate Capability.
    Weng YG; Ren ZH; Zhang ZR; Shao J; Zhu QY; Dai J
    Inorg Chem; 2021 Nov; 60(22):17074-17082. PubMed ID: 34702033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidatively Doped Tetrathiafulvalene-Based Metal-Organic Frameworks for High Specific Energy of Supercapatteries.
    Ren ZH; Zhang ZR; Ma LJ; Luo CY; Dai J; Zhu QY
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6621-6630. PubMed ID: 36695585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning Electrical- and Photo-Conductivity by Cation Exchange within a Redox-Active Tetrathiafulvalene-Based Metal-Organic Framework.
    Zhou Y; Yu F; Su J; Kurmoo M; Zuo JL
    Angew Chem Int Ed Engl; 2020 Oct; 59(42):18763-18767. PubMed ID: 32652797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic, Structural and Functional Versatility in Tetrathiafulvalene-Lanthanide Metal-Organic Frameworks.
    Castells-Gil J; Mañas-Valero S; Vitórica-Yrezábal IJ; Ananias D; Rocha J; Santiago R; Bromley ST; Baldoví JJ; Coronado E; Souto M; Mínguez Espallargas G
    Chemistry; 2019 Sep; 25(54):12636-12643. PubMed ID: 31350922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced photoconversion performance of NdVO
    Chang M; Wang M; Shu M; Zhao Y; Ding B; Huang S; Hou Z; Han G; Lin J
    Acta Biomater; 2019 Nov; 99():295-306. PubMed ID: 31437636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.