These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Coordinated Control of Acoustical Field of View and Flight in Three-Dimensional Space for Consecutive Capture by Echolocating Bats during Natural Foraging. Sumiya M; Fujioka E; Motoi K; Kondo M; Hiryu S PLoS One; 2017; 12(1):e0169995. PubMed ID: 28085936 [TBL] [Abstract][Full Text] [Related]
6. On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude. Hiryu S; Shiori Y; Hosokawa T; Riquimaroux H; Watanabe Y J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Sep; 194(9):841-51. PubMed ID: 18663454 [TBL] [Abstract][Full Text] [Related]
7. Bats coordinate sonar and flight behavior as they forage in open and cluttered environments. Falk B; Jakobsen L; Surlykke A; Moss CF J Exp Biol; 2014 Dec; 217(Pt 24):4356-64. PubMed ID: 25394632 [TBL] [Abstract][Full Text] [Related]
8. Echo interval and not echo intensity drives bat flight behavior in structured corridors. Warnecke M; Macías S; Falk B; Moss CF J Exp Biol; 2018 Dec; 221(Pt 24):. PubMed ID: 30355612 [TBL] [Abstract][Full Text] [Related]
9. Modulation of acoustic navigation behaviour by spatial learning in the echolocating bat Rhinolophus ferrumequinum nippon. Yamada Y; Mibe Y; Yamamoto Y; Ito K; Heim O; Hiryu S Sci Rep; 2020 Jul; 10(1):10751. PubMed ID: 32612132 [TBL] [Abstract][Full Text] [Related]
10. Coordination of bat sonar activity and flight for the exploration of three-dimensional objects. Genzel D; Geberl C; Dera T; Wiegrebe L J Exp Biol; 2012 Jul; 215(Pt 13):2226-35. PubMed ID: 22675183 [TBL] [Abstract][Full Text] [Related]
11. Population registration of echo flow in the big brown bat's auditory midbrain. Warnecke M; Simmons JA; Simmons AM J Neurophysiol; 2021 Oct; 126(4):1314-1325. PubMed ID: 34495767 [TBL] [Abstract][Full Text] [Related]
12. Echo-acoustic flow dynamically modifies the cortical map of target range in bats. Bartenstein SK; Gerstenberg N; Vanderelst D; Peremans H; Firzlaff U Nat Commun; 2014 Aug; 5():4668. PubMed ID: 25131175 [TBL] [Abstract][Full Text] [Related]
14. Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone. Hiryu S; Hagino T; Riquimaroux H; Watanabe Y J Acoust Soc Am; 2007 Mar; 121(3):1749-57. PubMed ID: 17407911 [TBL] [Abstract][Full Text] [Related]
15. Echo-acoustic scanning with noseleaf and ears in phyllostomid bats. Kugler K; Wiegrebe L J Exp Biol; 2017 Aug; 220(Pt 15):2816-2824. PubMed ID: 28768750 [TBL] [Abstract][Full Text] [Related]
16. Bats' avoidance of real and virtual objects: implications for the sonar coding of object size. Goerlitz HR; Genzel D; Wiegrebe L Behav Processes; 2012 Jan; 89(1):61-7. PubMed ID: 22085788 [TBL] [Abstract][Full Text] [Related]
18. Avoidance of non-localizable obstacles in echolocating bats: A robotic model. Bou Mansour C; Koreman E; Steckel J; Peremans H; Vanderelst D PLoS Comput Biol; 2019 Dec; 15(12):e1007550. PubMed ID: 31856162 [TBL] [Abstract][Full Text] [Related]
19. An audio-vocal interface in echolocating horseshoe bats. Metzner W J Neurosci; 1993 May; 13(5):1899-915. PubMed ID: 8478683 [TBL] [Abstract][Full Text] [Related]
20. Segregating signal from noise through movement in echolocating bats. Taub M; Yovel Y Sci Rep; 2020 Jan; 10(1):382. PubMed ID: 31942008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]