These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 35282869)

  • 21. Microfluidics for Environmental Applications.
    Wang T; Yu C; Xie X
    Adv Biochem Eng Biotechnol; 2022; 179():267-290. PubMed ID: 32440697
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Emerging Trends in Microfluidics Based Devices.
    Solanki S; Pandey CM; Gupta RK; Malhotra BD
    Biotechnol J; 2020 May; 15(5):e1900279. PubMed ID: 32045505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis.
    Chen P; Li S; Guo Y; Zeng X; Liu BF
    Anal Chim Acta; 2020 Aug; 1125():94-113. PubMed ID: 32674786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hyperpolarized (13)C Magnetic Resonance and Its Use in Metabolic Assessment of Cultured Cells and Perfused Organs.
    Lumata L; Yang C; Ragavan M; Carpenter N; DeBerardinis RJ; Merritt ME
    Methods Enzymol; 2015; 561():73-106. PubMed ID: 26358902
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetic nanoparticles in microfluidics-based diagnostics: an appraisal.
    Sharma S; Bhatia V
    Nanomedicine (Lond); 2021 Jun; 16(15):1329-1342. PubMed ID: 34027677
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic channel sensory system for electro-addressing cell location, determining confluency, and quantifying a general number of cells.
    Rapier CE; Jagadeesan S; Vatine G; Ben-Yoav H
    Sci Rep; 2022 Feb; 12(1):3248. PubMed ID: 35228609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Paper-thin multilayer microfluidic devices with integrated valves.
    Kim S; Dorlhiac G; Cotrim Chaves R; Zalavadia M; Streets A
    Lab Chip; 2021 Apr; 21(7):1287-1298. PubMed ID: 33690757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic devices for the detection of disease-specific proteins and other macromolecules, disease modelling and drug development: A review.
    Amir S; Arathi A; Reshma S; Mohanan PV
    Int J Biol Macromol; 2023 Apr; 235():123784. PubMed ID: 36822284
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fly-on-a-Chip: Microfluidics for Drosophila melanogaster Studies.
    Zabihihesari A; Hilliker AJ; Rezai P
    Integr Biol (Camb); 2019 Dec; 11(12):425-443. PubMed ID: 31965192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Piezoresistive Conductive Microfluidic Membranes for Low-Cost On-Chip Pressure and Flow Sensing.
    Islam MN; Doria SM; Fu X; Gagnon ZR
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic Based Optical Microscopes on Chip.
    Paiè P; Martínez Vázquez R; Osellame R; Bragheri F; Bassi A
    Cytometry A; 2018 Oct; 93(10):987-996. PubMed ID: 30211977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural shimming for high-resolution nuclear magnetic resonance spectroscopy in lab-on-a-chip devices.
    Ryan H; Smith A; Utz M
    Lab Chip; 2014 May; 14(10):1678-85. PubMed ID: 24658666
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NMR hyperpolarization techniques for biomedicine.
    Nikolaou P; Goodson BM; Chekmenev EY
    Chemistry; 2015 Feb; 21(8):3156-66. PubMed ID: 25470566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of Nuclear Magnetic Resonance Molecular Probes for Hyperpolarized Bioimaging.
    Kondo Y; Nonaka H; Takakusagi Y; Sando S
    Angew Chem Int Ed Engl; 2021 Jun; 60(27):14779-14799. PubMed ID: 32372551
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms.
    Dak P; Ebrahimi A; Swaminathan V; Duarte-Guevara C; Bashir R; Alam MA
    Biosensors (Basel); 2016 Apr; 6(2):14. PubMed ID: 27089377
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An optimised detector for in-situ high-resolution NMR in microfluidic devices.
    Finch G; Yilmaz A; Utz M
    J Magn Reson; 2016 Jan; 262():73-80. PubMed ID: 26754062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lab on a body for biomedical electrochemical sensing applications: The next generation of microfluidic devices.
    Jeerapan I; Moonla C; Thavarungkul P; Kanatharana P
    Prog Mol Biol Transl Sci; 2022; 187(1):249-279. PubMed ID: 35094777
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Real-time quantitative analysis of metabolic flux in live cells using a hyperpolarized micromagnetic resonance spectrometer.
    Jeong S; Eskandari R; Park SM; Alvarez J; Tee SS; Weissleder R; Kharas MG; Lee H; Keshari KR
    Sci Adv; 2017 Jun; 3(6):e1700341. PubMed ID: 28630930
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.