These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 35282939)
1. Pressure, Flow, and Glottal Area Waveform Profile Changes During Phonation Using the Acapella Choice Device. Andrade PA; Frič M; Saccente-Kennedy B; Hruška V J Voice; 2024 Sep; 38(5):1248.e23-1248.e33. PubMed ID: 35282939 [TBL] [Abstract][Full Text] [Related]
2. A Pilot Study Assessing the Therapeutic Potential of a Vibratory Positive Expiratory Pressure Device (Acapella Choice) in the Treatment of Voice Disorders. Saccente-Kennedy B; Amarante Andrade P; Epstein R J Voice; 2020 May; 34(3):487.e21-487.e30. PubMed ID: 32389238 [TBL] [Abstract][Full Text] [Related]
3. A Comparison of the Effects of Phonation into a Positive Expiratory Pressure Device and Silicone Tube in Water on the Vocal Mechanism. Amarante Andrade P; Frič M; Saccente-Kennedy B; Hruška V J Voice; 2023 Nov; ():. PubMed ID: 37957073 [TBL] [Abstract][Full Text] [Related]
4. Resonance tube phonation in water: High-speed imaging, electroglottographic and oral pressure observations of vocal fold vibrations--a pilot study. Granqvist S; Simberg S; Hertegård S; Holmqvist S; Larsson H; Lindestad PÅ; Södersten M; Hammarberg B Logoped Phoniatr Vocol; 2015 Oct; 40(3):113-21. PubMed ID: 24865620 [TBL] [Abstract][Full Text] [Related]
5. Vocal tract and glottal function during and after vocal exercising with resonance tube and straw. Guzman M; Laukkanen AM; Krupa P; Horáček J; Švec JG; Geneid A J Voice; 2013 Jul; 27(4):523.e19-34. PubMed ID: 23683806 [TBL] [Abstract][Full Text] [Related]
6. Development of a glottal area index that integrates glottal gap size and open quotient. Chen G; Kreiman J; Gerratt BR; Neubauer J; Shue YL; Alwan A J Acoust Soc Am; 2013 Mar; 133(3):1656-66. PubMed ID: 23464035 [TBL] [Abstract][Full Text] [Related]
7. Investigation of the Immediate Effects of Humming on Vocal Fold Vibration Irregularity Using Electroglottography and High-speed Laryngoscopy in Patients With Organic Voice Disorders. Vlot C; Ogawa M; Hosokawa K; Iwahashi T; Kato C; Inohara H J Voice; 2017 Jan; 31(1):48-56. PubMed ID: 27178453 [TBL] [Abstract][Full Text] [Related]
8. Air Pressure and Contact Quotient Measures During Different Semioccluded Postures in Subjects With Different Voice Conditions. Guzmán M; Castro C; Madrid S; Olavarria C; Leiva M; Muñoz D; Jaramillo E; Laukkanen AM J Voice; 2016 Nov; 30(6):759.e1-759.e10. PubMed ID: 26526005 [TBL] [Abstract][Full Text] [Related]
9. The influence of water resistance therapy on vocal fold vibration: a high-speed digital imaging study. Guzman M; Laukkanen AM; Traser L; Geneid A; Richter B; Muñoz D; Echternach M Logoped Phoniatr Vocol; 2017 Oct; 42(3):99-107. PubMed ID: 27484690 [TBL] [Abstract][Full Text] [Related]
10. How Much Loading Does Water Resistance Voice Therapy Impose on the Vocal Folds? An Experimental Human Study. Laukkanen AM; Geneid A; Bula V; Radolf V; Horáček J; Ikävalko T; Kukkonen T; Kankare E; Tyrmi J J Voice; 2020 May; 34(3):387-397. PubMed ID: 30470593 [TBL] [Abstract][Full Text] [Related]
11. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation. Zheng X; Bielamowicz S; Luo H; Mittal R Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730 [TBL] [Abstract][Full Text] [Related]
12. Glottal Airflow and Glottal Area Waveform Characteristics of Flow Phonation in Untrained Vocally Healthy Adults. Patel RR; Sundberg J; Gill B; Lã FMB J Voice; 2022 Jan; 36(1):140.e1-140.e21. PubMed ID: 32868146 [TBL] [Abstract][Full Text] [Related]
13. Effects of Volume, Pitch, and Phonation Type on Oscillation Initiation and Termination Phases Investigated With High-speed Videoendoscopy. Kunduk M; Ikuma T; Blouin DC; McWhorter AJ J Voice; 2017 May; 31(3):313-322. PubMed ID: 27671752 [TBL] [Abstract][Full Text] [Related]
15. The Effects of Humming on the Prephonatory Vocal Fold Motions Under High-Speed Digital Imaging in Nondysphonic Speakers. Iwahashi T; Ogawa M; Hosokawa K; Kato C; Inohara H J Voice; 2017 May; 31(3):291-299. PubMed ID: 27726905 [TBL] [Abstract][Full Text] [Related]
16. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control. Zhang Z J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022 [TBL] [Abstract][Full Text] [Related]
17. Imaging and Analysis of Human Vocal Fold Vibration Using Two-Dimensional (2D) Scanning Videokymography. Park HJ; Cha W; Kim GH; Jeon GR; Lee BJ; Shin BJ; Choi YG; Wang SG J Voice; 2016 May; 30(3):345-53. PubMed ID: 26239969 [TBL] [Abstract][Full Text] [Related]
18. Analysis of longitudinal phase differences in vocal-fold vibration using synchronous high-speed videoendoscopy and electroglottography. Orlikoff RF; Golla ME; Deliyski DD J Voice; 2012 Nov; 26(6):816.e13-20. PubMed ID: 23059188 [TBL] [Abstract][Full Text] [Related]
19. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling. Bailly L; Henrich N; Pelorson X J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769 [TBL] [Abstract][Full Text] [Related]
20. Direct measurement of pressures involved in vocal exercises using semi-occluded vocal tracts. Robieux C; Galant C; Lagier A; Legou T; Giovanni A Logoped Phoniatr Vocol; 2015 Oct; 40(3):106-12. PubMed ID: 24850270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]