These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 35283192)

  • 21. Staphylococcus lugdunensis: a Skin Commensal with Invasive Pathogenic Potential.
    Heilbronner S; Foster TJ
    Clin Microbiol Rev; 2021 Mar; 34(2):. PubMed ID: 33361142
    [No Abstract]   [Full Text] [Related]  

  • 22. Staphylococcus lugdunensis Uses the Agr Regulatory System to Resist Killing by Host Innate Immune Effectors.
    Chin D; Flannagan RS; Tuffs SW; Chan JK; McCormick JK; Heinrichs DE
    Infect Immun; 2022 Oct; 90(10):e0009922. PubMed ID: 36069592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of the iron-limitation stimulon in Staphylococcus lugdunensis.
    Aubourg M; Gravey F; Dhalluin A; Giard JC
    Arch Microbiol; 2021 Aug; 203(6):3687-3694. PubMed ID: 33983488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A battle for iron: host sequestration and Staphylococcus aureus acquisition.
    Haley KP; Skaar EP
    Microbes Infect; 2012 Mar; 14(3):217-27. PubMed ID: 22123296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular mechanisms of Staphylococcus aureus iron acquisition.
    Hammer ND; Skaar EP
    Annu Rev Microbiol; 2011; 65():129-47. PubMed ID: 21639791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Iron-regulated surface determinants (Isd) of Staphylococcus aureus: stealing iron from heme.
    Skaar EP; Schneewind O
    Microbes Infect; 2004 Apr; 6(4):390-7. PubMed ID: 15101396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical Synthesis of Staphyloferrin B Affords Insight into the Molecular Structure, Iron Chelation, and Biological Activity of a Polycarboxylate Siderophore Deployed by the Human Pathogen Staphylococcus aureus.
    Madsen JL; Johnstone TC; Nolan EM
    J Am Chem Soc; 2015 Jul; 137(28):9117-27. PubMed ID: 26030732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Regulatory Protein ChuP Connects Heme and Siderophore-Mediated Iron Acquisition Systems Required for
    de Lima VM; Batista BB; da Silva Neto JF
    Front Cell Infect Microbiol; 2022; 12():873536. PubMed ID: 35646721
    [No Abstract]   [Full Text] [Related]  

  • 29. Requirement of Staphylococcus aureus ATP-binding cassette-ATPase FhuC for iron-restricted growth and evidence that it functions with more than one iron transporter.
    Speziali CD; Dale SE; Henderson JA; Vinés ED; Heinrichs DE
    J Bacteriol; 2006 Mar; 188(6):2048-55. PubMed ID: 16513734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phenotypic and proteomic approaches of the response to iron-limited condition in Staphylococcus lugdunensis.
    Aubourg M; Dhalluin A; Gravey F; Pottier M; Thomy N; Bernay B; Goux D; Martineau M; Giard JC
    BMC Microbiol; 2020 Oct; 20(1):328. PubMed ID: 33115407
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Staphylococcus aureus Protein IsdH Inhibits Host Hemoglobin Scavenging to Promote Heme Acquisition by the Pathogen.
    Sæderup KL; Stødkilde K; Graversen JH; Dickson CF; Etzerodt A; Hansen SW; Fago A; Gell D; Andersen CB; Moestrup SK
    J Biol Chem; 2016 Nov; 291(46):23989-23998. PubMed ID: 27681593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The lipoprotein components of the Isd and Hts transport systems are dispensable for acquisition of heme by Staphylococcus aureus.
    Wright JA; Nair SP
    FEMS Microbiol Lett; 2012 Apr; 329(2):177-85. PubMed ID: 22309509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing the contribution of heme-iron acquisition to Staphylococcus aureus pneumonia using computed tomography.
    Mason WJ; Skaar EP
    PLoS One; 2009 Aug; 4(8):e6668. PubMed ID: 19688098
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and role of the linker domain of the iron surface-determinant protein IsdH in heme transportation in Staphylococcus aureus.
    Valenciano-Bellido S; Caaveiro JMM; Morante K; Sushko T; Nakakido M; Nagatoishi S; Tsumoto K
    J Biol Chem; 2022 Jun; 298(6):101995. PubMed ID: 35500652
    [TBL] [Abstract][Full Text] [Related]  

  • 35. IsdC from Staphylococcus lugdunensis induces biofilm formation under low-iron growth conditions.
    Missineo A; Di Poto A; Geoghegan JA; Rindi S; Heilbronner S; Gianotti V; Arciola CR; Foster TJ; Speziale P; Pietrocola G
    Infect Immun; 2014 Jun; 82(6):2448-59. PubMed ID: 24686057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iron acquisition and transport in Staphylococcus aureus.
    Maresso AW; Schneewind O
    Biometals; 2006 Apr; 19(2):193-203. PubMed ID: 16718604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Novel Approach To Identify Inhibitors of Iron Acquisition Systems of Pseudomonas aeruginosa.
    Kannon M; Nebane NM; Ruiz P; McKellip S; Vinson PN; Mitra A
    Microbiol Spectr; 2022 Oct; 10(5):e0243722. PubMed ID: 36098531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Subcellular localization of the Staphylococcus aureus heme iron transport components IsdA and IsdB.
    Pishchany G; Dickey SE; Skaar EP
    Infect Immun; 2009 Jul; 77(7):2624-34. PubMed ID: 19398548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial iron sources: from siderophores to hemophores.
    Wandersman C; Delepelaire P
    Annu Rev Microbiol; 2004; 58():611-47. PubMed ID: 15487950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural biology of heme binding in the Staphylococcus aureus Isd system.
    Grigg JC; Ukpabi G; Gaudin CF; Murphy ME
    J Inorg Biochem; 2010 Mar; 104(3):341-8. PubMed ID: 19853304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.