These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 35283254)
1. The distribution of Dlx1-2 and glutamic acid decarboxylase in the embryonic and adult hypothalamus reveals three differentiated LHA subdivisions in rodents. Barbier M; Croizier S; Alvarez-Bolado G; Risold PY J Chem Neuroanat; 2022 Apr; 121():102089. PubMed ID: 35283254 [TBL] [Abstract][Full Text] [Related]
2. GABAergic Interneuron Differentiation in the Basal Forebrain Is Mediated through Direct Regulation of Glutamic Acid Decarboxylase Isoforms by Le TN; Zhou QP; Cobos I; Zhang S; Zagozewski J; Japoni S; Vriend J; Parkinson T; Du G; Rubenstein JL; Eisenstat DD J Neurosci; 2017 Sep; 37(36):8816-8829. PubMed ID: 28821666 [TBL] [Abstract][Full Text] [Related]
3. GABAergic and cholinergic basal forebrain and preoptic-anterior hypothalamic projections to the mediodorsal nucleus of the thalamus in the cat. Gritti I; Mariotti M; Mancia M Neuroscience; 1998 Jul; 85(1):149-78. PubMed ID: 9607710 [TBL] [Abstract][Full Text] [Related]
4. Projections of GABAergic and cholinergic basal forebrain and GABAergic preoptic-anterior hypothalamic neurons to the posterior lateral hypothalamus of the rat. Gritti I; Mainville L; Jones BE J Comp Neurol; 1994 Jan; 339(2):251-68. PubMed ID: 8300907 [TBL] [Abstract][Full Text] [Related]
5. Opioid precursor gene expression in the human hypothalamus. Sukhov RR; Walker LC; Rance NE; Price DL; Young WS J Comp Neurol; 1995 Mar; 353(4):604-22. PubMed ID: 7759618 [TBL] [Abstract][Full Text] [Related]
6. Morphofunctional Organization of the Connections From the Medial and Intermediate Parts of the Central Nucleus of the Amygdala Into Distinct Divisions of the Lateral Hypothalamic Area in the Rat. Barbier M; Fellmann D; Risold PY Front Neurol; 2018; 9():688. PubMed ID: 30210427 [TBL] [Abstract][Full Text] [Related]
7. GABAergic and non-GABAergic thalamic, hypothalamic and basal forebrain projections to the ventral oral pontine reticular nucleus: their implication in REM sleep modulation. Rodrigo-Angulo ML; Heredero S; Rodríguez-Veiga E; Reinoso-Suárez F Brain Res; 2008 May; 1210():116-25. PubMed ID: 18407254 [TBL] [Abstract][Full Text] [Related]
8. An autoradiographic study of the efferent connections of the lateral hypothalamic area in the rat. Saper CB; Swanson LW; Cowan WM J Comp Neurol; 1979 Feb; 183(4):689-706. PubMed ID: 105019 [TBL] [Abstract][Full Text] [Related]
9. Ontogeny of gamma-aminobutyric acid-immunoreactive neuronal populations in the forebrain and midbrain of the sea lamprey. Meléndez-Ferro M; Pérez-Costas E; Villar-Cheda B; Abalo XM; Rodríguez-Muñoz R; Rodicio MC; Anadón R J Comp Neurol; 2002 May; 446(4):360-76. PubMed ID: 11954035 [TBL] [Abstract][Full Text] [Related]
10. Development of direct GABAergic projections from the zona incerta to the somatosensory cortex of the rat. Nicolelis MA; Chapin JK; Lin RC Neuroscience; 1995 Mar; 65(2):609-31. PubMed ID: 7777173 [TBL] [Abstract][Full Text] [Related]
11. The distribution of GABA-containing perikarya, fibers, and terminals in the forebrain and midbrain of pigeons, with particular reference to the basal ganglia and its projection targets. Veenman CL; Reiner A J Comp Neurol; 1994 Jan; 339(2):209-50. PubMed ID: 8300906 [TBL] [Abstract][Full Text] [Related]
12. GABAergic Neurons and Their Modulatory Effects on GnRH3 in Zebrafish. Song Y; Tao B; Chen J; Jia S; Zhu Z; Trudeau VL; Hu W Endocrinology; 2017 Apr; 158(4):874-886. PubMed ID: 28324056 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the hypothalamus of Xenopus laevis during development. II. The basal regions. Domínguez L; González A; Moreno N J Comp Neurol; 2014 Apr; 522(5):1102-31. PubMed ID: 24122702 [TBL] [Abstract][Full Text] [Related]
14. Distribution of catecholamine neurons in the hypothalamus and preoptic region of mouse. Ruggiero DA; Baker H; Joh TH; Reis DJ J Comp Neurol; 1984 Mar; 223(4):556-82. PubMed ID: 6143768 [TBL] [Abstract][Full Text] [Related]
15. Neuronal degeneration is observed in multiple regions outside the hippocampus after lithium pilocarpine-induced status epilepticus in the immature rat. Scholl EA; Dudek FE; Ekstrand JJ Neuroscience; 2013 Nov; 252():45-59. PubMed ID: 23896573 [TBL] [Abstract][Full Text] [Related]
16. Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions. Alvarez-Bolado G; Paul FA; Blaess S Neural Dev; 2012 Jan; 7():4. PubMed ID: 22264356 [TBL] [Abstract][Full Text] [Related]
17. Distribution of thyrotropin-releasing hormone (TRH) immunoreactivity in the brain of the zebrafish (Danio rerio). Díaz ML; Becerra M; Manso MJ; Anadón R J Comp Neurol; 2002 Aug; 450(1):45-60. PubMed ID: 12124766 [TBL] [Abstract][Full Text] [Related]
18. Development of the human motor-related thalamic nuclei during the first half of gestation, with special emphasis on GABAergic circuits. Kultas-Ilinsky K; Fallet C; Verney C J Comp Neurol; 2004 Aug; 476(3):267-89. PubMed ID: 15269970 [TBL] [Abstract][Full Text] [Related]
19. Study of the origins of melanin-concentrating hormone and neuropeptide EI immunoreactive projections to the periaqueductal gray matter. Elias CF; Bittencourt JC Brain Res; 1997 May; 755(2):255-71. PubMed ID: 9175893 [TBL] [Abstract][Full Text] [Related]
20. Two epochs in the development of gamma-aminobutyric acidergic neurons in the ferret thalamus. Hayes SG; Murray KD; Jones EG J Comp Neurol; 2003 Aug; 463(1):45-65. PubMed ID: 12811802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]