These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. ID-Viewer: a visual analytics architecture for infectious diseases surveillance and response management in Pakistan. Ali MA; Ahsan Z; Amin M; Latif S; Ayyaz A; Ayyaz MN Public Health; 2016 May; 134():72-85. PubMed ID: 26880489 [TBL] [Abstract][Full Text] [Related]
4. Three-Month Real-Time Dengue Forecast Models: An Early Warning System for Outbreak Alerts and Policy Decision Support in Singapore. Shi Y; Liu X; Kok SY; Rajarethinam J; Liang S; Yap G; Chong CS; Lee KS; Tan SS; Chin CK; Lo A; Kong W; Ng LC; Cook AR Environ Health Perspect; 2016 Sep; 124(9):1369-75. PubMed ID: 26662617 [TBL] [Abstract][Full Text] [Related]
5. Black Swan Events and Intelligent Automation for Routine Safety Surveillance. Kjoersvik O; Bate A Drug Saf; 2022 May; 45(5):419-427. PubMed ID: 35579807 [TBL] [Abstract][Full Text] [Related]
6. Recognition of threats caused by infectious diseases in the Netherlands: the early warning committee. Rahamat-Langendoen JC; van Vliet JA; Suijkerbuijk AW Euro Surveill; 2006; 11(12):242-5. PubMed ID: 17370963 [TBL] [Abstract][Full Text] [Related]
7. A Black Swan event-based hybrid model for Indian stock markets' trends prediction. Bhanja S; Das A Innov Syst Softw Eng; 2022 Jan; ():1-15. PubMed ID: 35018169 [TBL] [Abstract][Full Text] [Related]
8. Dragons, black swans and decisions. Ale BJM; Hartford DND; Slater DH Environ Res; 2020 Apr; 183():109127. PubMed ID: 32000008 [TBL] [Abstract][Full Text] [Related]
9. [Roles of detection, surveillance and early warning on outbreaks or epidemics of infectious diseases]. Wang SK; Zhao SW; Fu XQ; Meng YP; Zhang Y; Luo CR; Zhou YM; Song ZZ Zhonghua Liu Xing Bing Xue Za Zhi; 2021 May; 42(5):941-947. PubMed ID: 34814493 [TBL] [Abstract][Full Text] [Related]
10. Civil turmoil in Africa: a potential setback in the fight against diseases. Mkoji GM Afr J Health Sci; 1996 Nov; 3(4):109. PubMed ID: 17451312 [TBL] [Abstract][Full Text] [Related]
11. [Recognition of the threats caused by infectious diseases in The Netherlands in 2002 and 2003 by the weekly meetings of the early warning committee]. Rahamat-Langendoen JC; van Vliet JA; Suijkerbuijk AW Ned Tijdschr Geneeskd; 2005 Oct; 149(40):2238-42. PubMed ID: 16235803 [TBL] [Abstract][Full Text] [Related]
12. Investigations of Possible Multistate Outbreaks of Salmonella, Shiga Toxin-Producing Escherichia coli, and Listeria monocytogenes Infections - United States, 2016. Marshall KE; Nguyen TA; Ablan M; Nichols MC; Robyn MP; Sundararaman P; Whitlock L; Wise ME; Jhung MA MMWR Surveill Summ; 2020 Nov; 69(6):1-14. PubMed ID: 33180756 [TBL] [Abstract][Full Text] [Related]
13. Healthcare Operations and Black Swan Event for COVID-19 Pandemic: A Predictive Analytics. Devarajan JP; Manimuthu A; Sreedharan VR IEEE Trans Eng Manag; 2023 Sep; 70(9):3229-3243. PubMed ID: 37954443 [TBL] [Abstract][Full Text] [Related]
14. First Prototype of the Infectious Diseases Seeker (IDS) Software for Prompt Identification of Infectious Diseases. Baldassi F; Cenciarelli O; Malizia A; Gaudio P J Epidemiol Glob Health; 2020 Dec; 10(4):367-377. PubMed ID: 32959625 [TBL] [Abstract][Full Text] [Related]
15. Centenarians and supercentenarians: a black swan. Emerging social, medical and surgical problems. Vacante M; D'Agata V; Motta M; Malaguarnera G; Biondi A; Basile F; Malaguarnera M; Gagliano C; Drago F; Salamone S BMC Surg; 2012; 12 Suppl 1(Suppl 1):S36. PubMed ID: 23173707 [TBL] [Abstract][Full Text] [Related]
16. How to Determine the Early Warning Threshold Value of Meteorological Factors on Influenza through Big Data Analysis and Machine Learning. Ge H; Fan D; Wan M; Jin L; Wang X; Du X; Yang X Comput Math Methods Med; 2020; 2020():8845459. PubMed ID: 33343686 [TBL] [Abstract][Full Text] [Related]
17. COVID-19: Complexity and the Black Swan. Valeras AS Fam Syst Health; 2020 Jun; 38(2):221-223. PubMed ID: 32525362 [TBL] [Abstract][Full Text] [Related]
18. How to select a proper early warning threshold to detect infectious disease outbreaks based on the China infectious disease automated alert and response system (CIDARS). Wang R; Jiang Y; Michael E; Zhao G BMC Public Health; 2017 Jun; 17(1):570. PubMed ID: 28606078 [TBL] [Abstract][Full Text] [Related]
19. [A study regarding the applicability of WSARE algorithms in the early warning system of infectious disease outbreaks]. Zhang ZW; Feng ZJ; Li XS Zhonghua Liu Xing Bing Xue Za Zhi; 2010 Nov; 31(11):1306-10. PubMed ID: 21176699 [TBL] [Abstract][Full Text] [Related]
20. Limits to forecasting precision for outbreaks of directly transmitted diseases. Drake JM PLoS Med; 2006 Jan; 3(1):e3. PubMed ID: 16435887 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]