These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 35283914)
1. Transcriptomic Analysis Reveal the Molecular Mechanisms of Seed Coat Development in Xue Y; Shen Z; Tao F; Zhou J; Xu B Front Plant Sci; 2022; 13():772685. PubMed ID: 35283914 [No Abstract] [Full Text] [Related]
2. Genome-Wide Identification of the Chen J; Tao F; Xue Y; Xu B; Li X Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38673762 [TBL] [Abstract][Full Text] [Related]
3. Alternative Splicing of NAC Transcription Factor Gene Shen Q; Weng Y Genes (Basel); 2023 Apr; 14(5):. PubMed ID: 37239322 [TBL] [Abstract][Full Text] [Related]
4. Identification of single major QTL and candidate gene(s) governing hull-less seed trait in pumpkin. Kaur B; Garcha KS; Bhatia D; Khosa JS; Sharma M; Mittal A; Verma N; Dhatt AS Front Plant Sci; 2022; 13():948106. PubMed ID: 36035714 [TBL] [Abstract][Full Text] [Related]
5. A natural mutation of the Lyu X; Shi L; Zhao M; Li Z; Liao N; Meng Y; Ma Y; Zhou Y; Xue Q; Hu Z; Yang J; Zhang M Hortic Res; 2022; 9():uhac136. PubMed ID: 36072840 [TBL] [Abstract][Full Text] [Related]
6. Genetic Mapping and Identification of the Candidate Gene for White Seed Coat in Shi Y; Zhang M; Shu Q; Ma W; Sun T; Xiang C; Wang C; Duan Y Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33804065 [TBL] [Abstract][Full Text] [Related]
7. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality. Jiang J; Zhu S; Yuan Y; Wang Y; Zeng L; Batley J; Wang YP BMC Plant Biol; 2019 May; 19(1):203. PubMed ID: 31096923 [TBL] [Abstract][Full Text] [Related]
8. Comparative transcriptomic analysis of seed coats with high and low lignin contents reveals lignin and flavonoid biosynthesis in Brassica napus. Ding Y; Yu S; Wang J; Li M; Qu C; Li J; Liu L BMC Plant Biol; 2021 May; 21(1):246. PubMed ID: 34051742 [TBL] [Abstract][Full Text] [Related]
9. Interspecific hybridization for transfer of hull-less seed trait from Cucurbita pepo to C. moschata. Kaur B; Garcha KS; Sandhu JS; Sharma M; Dhatt AS Sci Rep; 2023 Mar; 13(1):4627. PubMed ID: 36944656 [TBL] [Abstract][Full Text] [Related]
10. Comparative RNA-Seq Analysis between Monoecious and Androecious Plants Reveals Regulatory Mechanisms Controlling Female Flowering in Segura M; García A; Benítez Á; Martínez C; Jamilena M Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139023 [TBL] [Abstract][Full Text] [Related]
11. First RNA-seq approach to study fruit set and parthenocarpy in zucchini (Cucurbita pepo L.). Pomares-Viciana T; Del Río-Celestino M; Román B; Die J; Pico B; Gómez P BMC Plant Biol; 2019 Feb; 19(1):61. PubMed ID: 30727959 [TBL] [Abstract][Full Text] [Related]
12. A protein-protochlorophyll complex obtained from inner seed coats of Cucurbita pepo. The resolution of its two pigment groups into true protochlorophyll and a pigment related to bacterial protochlorophyll. Jones OT Biochem J; 1966 Oct; 101(1):153-60. PubMed ID: 5971776 [TBL] [Abstract][Full Text] [Related]
13. Cloning and characterisation of a putative pollen-specific polygalacturonase gene (CpPG1) differentially regulated during pollen development in zucchini (Cucurbita pepo L.). Carvajal F; Garrido D; Jamilena M; Rosales R Plant Biol (Stuttg); 2014 Mar; 16(2):457-66. PubMed ID: 23879260 [TBL] [Abstract][Full Text] [Related]
14. Genomic Position and Markers Associated with the Hull-Less Seed Trait in Pumpkin. Meru G; Fu Y; Shrestha S; Michael VN; Dorval M; Mainviel R Plants (Basel); 2022 May; 11(9):. PubMed ID: 35567238 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the Sleep-Prolonging Effect of Lagenaria vulgaris and Cucurbita pepo Extracts on Pentobarbital-Induced Sleep and Possible Mechanisms of Action. Baradaran Rahimi V; Askari VR; Tajani AS; Hosseini A; Rakhshandeh H Medicina (Kaunas); 2018 Jul; 54(4):. PubMed ID: 30344286 [No Abstract] [Full Text] [Related]
16. Analysis of factors affecting volatile compound formation in roasted pumpkin seeds with selected ion flow tube-mass spectrometry (SIFT-MS) and sensory analysis. Bowman T; Barringer S J Food Sci; 2012 Jan; 77(1):C51-60. PubMed ID: 22122232 [TBL] [Abstract][Full Text] [Related]
17. Transcriptomic Analysis of Seed Coats in Yellow-Seeded Hong M; Hu K; Tian T; Li X; Chen L; Zhang Y; Yi B; Wen J; Ma C; Shen J; Fu T; Tu J Front Plant Sci; 2017; 8():1674. PubMed ID: 29051765 [TBL] [Abstract][Full Text] [Related]
18. Diversity of metabolite accumulation patterns in inner and outer seed coats of pomegranate: exploring their relationship with genetic mechanisms of seed coat development. Qin G; Liu C; Li J; Qi Y; Gao Z; Zhang X; Yi X; Pan H; Ming R; Xu Y Hortic Res; 2020; 7():10. PubMed ID: 31934341 [TBL] [Abstract][Full Text] [Related]
19. Transcriptomic and Metabolic Profiling Reveals a Lignin Metabolism Network Involved in Mesocotyl Elongation during Maize Seed Germination. Zhao X; Niu Y; Bai X; Mao T Plants (Basel); 2022 Apr; 11(8):. PubMed ID: 35448762 [TBL] [Abstract][Full Text] [Related]
20. Integrated RNA-Seq Analysis and Meta-QTLs Mapping Provide Insights into Cold Stress Response in Rice Seedling Roots. Kong W; Zhang C; Qiang Y; Zhong H; Zhao G; Li Y Int J Mol Sci; 2020 Jun; 21(13):. PubMed ID: 32610550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]