BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35284032)

  • 1. Design and Evaluation of a Handheld Robotic Device for Peripheral Catheterization.
    Leipheimer J; Balter M; Chen A; Yarmush M
    J Med Device; 2022 Jun; 16(2):021015. PubMed ID: 35284032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive Kinematic Control of a Robotic Venipuncture Device Based on Stereo Vision, Ultrasound, and Force Guidance.
    Balter ML; Chen AI; Maguire TJ; Yarmush ML
    IEEE Trans Ind Electron; 2017 Feb; 64(2):1626-1635. PubMed ID: 28111492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-in-human evaluation of a hand-held automated venipuncture device for rapid venous blood draws.
    Leipheimer JM; Balter ML; Chen AI; Pantin EJ; Davidovich AE; Labazzo KS; Yarmush ML
    Technology (Singap World Sci); 2019; 7(3-4):98-107. PubMed ID: 32292800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hand-held robotic device for peripheral intravenous catheterization.
    Cheng Z; Davies BL; Caldwell DG; Barresi G; Xu Q; Mattos LS
    Proc Inst Mech Eng H; 2017 Dec; 231(12):1165-1177. PubMed ID: 29059005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AI-Enabled, Ultrasound-Guided Handheld Robotic Device for Femoral Vascular Access.
    Brattain LJ; Pierce TT; Gjesteby LA; Johnson MR; DeLosa ND; Werblin JS; Gupta JF; Ozturk A; Wang X; Li Q; Telfer BA; Samir AE
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and validation of a medical robotic device system to control two collaborative robots for ultrasound-guided needle insertions.
    Berger J; Unger M; Keller J; Reich CM; Neumuth T; Melzer A
    Front Robot AI; 2022; 9():875845. PubMed ID: 36246494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Puncture accuracy of an optical tracked robotic aiming device-a phantom study.
    Scharll Y; Letrari S; Laimer G; Schullian P; Bale R
    Eur Radiol; 2022 Oct; 32(10):6769-6776. PubMed ID: 35678863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The System Design and Evaluation of a 7-DOF Image-Guided Venipuncture Robot.
    Balter ML; Chen AI; Maguire TJ; Yarmush ML
    IEEE Trans Robot; 2015 Aug; 31(4):1044-1053. PubMed ID: 26257588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of robotic endovascular catheters in fenestrated stent grafting.
    Riga CV; Cheshire NJ; Hamady MS; Bicknell CD
    J Vasc Surg; 2010 Apr; 51(4):810-9; discussion 819-20. PubMed ID: 20347674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Handheld Ultrasound: Overcoming the Challenge of Difficult Peripheral Intravenous Access in the Emergency Department.
    Acuña J; Sorenson J; Gades A; Wyatt R; Stea N; Drachman M; Adhikari S
    J Ultrasound Med; 2020 Oct; 39(10):1985-1991. PubMed ID: 32333616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haptic virtual fixture for robotic cardiac catheter navigation.
    Park JW; Choi J; Park Y; Sun K
    Artif Organs; 2011 Nov; 35(11):1127-31. PubMed ID: 22023171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromagnetic tracking of flexible robotic catheters enables "assisted navigation" and brings automation to endovascular navigation in an in vitro study.
    Schwein A; Kramer B; Chinnadurai P; Virmani N; Walker S; O'Malley M; Lumsden AB; Bismuth J
    J Vasc Surg; 2018 Apr; 67(4):1274-1281. PubMed ID: 28583735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A randomized controlled trial of ultrasound-assisted technique versus conventional puncture method for saphenous venous cannulations in children with congenital heart disease.
    Bian Y; Huang Y; Bai J; Zheng J; Huang Y
    BMC Anesthesiol; 2021 Apr; 21(1):131. PubMed ID: 33906601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The challenges facing deep learning-based catheter localization for ultrasound guided high-dose-rate prostate brachytherapy.
    Liu D; Tupor S; Singh J; Chernoff T; Leong N; Sadikov E; Amjad A; Zilles S
    Med Phys; 2022 Apr; 49(4):2442-2451. PubMed ID: 35118676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of robotic endovascular catheters for arch vessel cannulation.
    Riga CV; Bicknell CD; Hamady MS; Cheshire NJ
    J Vasc Surg; 2011 Sep; 54(3):799-809. PubMed ID: 21620623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robot-Assisted Needle Insertion for CT-Guided Puncture: Experimental Study with a Phantom and Animals.
    Chen X; Yan Y; Li A; Wang T; Wang Y
    Cardiovasc Intervent Radiol; 2023 Jan; 46(1):128-135. PubMed ID: 36380153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and experimental evaluation of an automated catheter operating system.
    Norouzi-Ghazbi S; Mehrkish A; Abdulhafiz I; Abbasi-Hashemi T; Mahdi A; Janabi-Sharifi F
    Artif Organs; 2021 Jun; 45(6):E171-E186. PubMed ID: 33237609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-Vivo Validation of a Novel Robotic Platform for Endovascular Intervention.
    Dagnino G; Kundrat D; Kwok TMY; Abdelaziz MEMK; Chi W; Nguyen A; Riga C; Yang GZ
    IEEE Trans Biomed Eng; 2023 Jun; 70(6):1786-1794. PubMed ID: 37015473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current state in tracking and robotic navigation systems for application in endovascular aortic aneurysm repair.
    de Ruiter QM; Moll FL; van Herwaarden JA
    J Vasc Surg; 2015 Jan; 61(1):256-64. PubMed ID: 25441011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and validation of a CT-guided robotic system for lung cancer brachytherapy.
    Dou H; Jiang S; Yang Z; Sun L; Ma X; Huo B
    Med Phys; 2017 Sep; 44(9):4828-4837. PubMed ID: 28657112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.