These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35284194)

  • 21. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.
    Nagarajan VK; Yu B
    Lasers Surg Med; 2016 Sep; 48(7):686-94. PubMed ID: 27250022
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Validation of tissue optical properties measurement using diffuse reflectance spectroscopy (DRS).
    Ong YH; Zhu Y; Zhu TC
    Proc SPIE Int Soc Opt Eng; 2019 Feb; 10860():. PubMed ID: 31057197
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diffuse reflectance and transmittance spectra of an interference layer. 2. Evaluation of tin oxide-coated glass.
    Rönnow D; Roos A
    Appl Opt; 1994 Dec; 33(34):7918-27. PubMed ID: 20963006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions.
    Meglinski IV; Matcher SJ
    Physiol Meas; 2002 Nov; 23(4):741-53. PubMed ID: 12450273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative measurement of muscle oxygen saturation without influence from skin and fat using continuous-wave near infrared spectroscopy.
    Yang Y; Soyemi O; Scott PJ; Landry MR; Lee SM; Stroud L; Soller BR
    Opt Express; 2007 Oct; 15(21):13715-30. PubMed ID: 19550643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Model-based analysis of reflectance and fluorescence spectra for in vivo detection of cervical dysplasia and cancer.
    Redden Weber C; Schwarz RA; Atkinson EN; Cox DD; Macaulay C; Follen M; Richards-Kortum R
    J Biomed Opt; 2008; 13(6):064016. PubMed ID: 19123662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tissue intrinsic fluorescence recovering by an empirical approach based on the PSO algorithm and its application in type 2 diabetes screening.
    Zhang Y; Hou H; Zhang Y; Wang Y; Zhu L; Dong M; Liu Y
    Biomed Opt Express; 2018 Apr; 9(4):1795-1808. PubMed ID: 29675320
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantification of the optical properties of two-layer turbid materials using a hyperspectral imaging-based spatially-resolved technique.
    Cen H; Lu R
    Appl Opt; 2009 Oct; 48(29):5612-23. PubMed ID: 19823246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predictive model for the quantitative analysis of human skin using photothermal radiometry and diffuse reflectance spectroscopy.
    Verdel N; Tanevski J; Džeroski S; Majaron B
    Biomed Opt Express; 2020 Mar; 11(3):1679-1696. PubMed ID: 32206435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diffuse reflectance spectra measured
    Finlay JC; Zhu TC; Dimofte A; Friedberg JS; Hahn SM
    Proc SPIE Int Soc Opt Eng; 2006 Jan; 6139():. PubMed ID: 26113757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study on the effect of blood content on diffuse reflectance spectra of basal cell carcinoma skin tissue.
    Nan M; He Q
    ScientificWorldJournal; 2013; 2013():192495. PubMed ID: 24023527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monte Carlo simulation of cutaneous reflectance and fluorescence measurements--the effect of melanin contents and localization.
    Chen R; Huang Z; Lui H; Hamzavi I; McLean DI; Xie S; Zeng H
    J Photochem Photobiol B; 2007 Mar; 86(3):219-26. PubMed ID: 17157523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling and validation of spectral reflectance for the colon.
    Hidović-Rowe D; Claridge E
    Phys Med Biol; 2005 Mar; 50(6):1071-93. PubMed ID: 15798309
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hybrid method to estimate two-layered superficial tissue optical properties from simulated data of diffuse reflectance spectroscopy.
    Hsieh HP; Ko FH; Sung KB
    Appl Opt; 2018 Apr; 57(12):3038-3046. PubMed ID: 29714335
    [TBL] [Abstract][Full Text] [Related]  

  • 35.
    Finlay JC; Zhu TC; Dimofte A; Stripp D; Malkowicz SB; Whittington R; Miles J; Glatstein E; Hahn SM
    Proc SPIE Int Soc Opt Eng; 2014 Jun; 5315():132-142. PubMed ID: 26146442
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing the sensitivity to scattering coefficient of the epithelium in a two-layered tissue model by oblique optical fibers: Monte Carlo study.
    Sung KB; Chen HH
    J Biomed Opt; 2012 Oct; 17(10):107003. PubMed ID: 23047254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient construction of robust artificial neural networks for accurate determination of superficial sample optical properties.
    Chen YW; Tseng SH
    Biomed Opt Express; 2015 Mar; 6(3):747-60. PubMed ID: 25798300
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diffuse Reflectance Parameters of Treated Leishmaniasis Cutaneous Ulcers and Association with Histopathologies in an Animal Model: A Proof of Concept.
    Restrepo L; Murillo J; Botina D; Zarzycki A; Garzón J; Franco R; Montano J; Calderon S; Torres-Madronero MC; Marzani F; Robledo SM; Galeano J
    SLAS Technol; 2021 Dec; 26(6):667-680. PubMed ID: 34292085
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Reconstruction of Water Hyperspectral Remote Sensing Reflectance Based on Sparse Representation and Its Application].
    Li Y; Li YM; Guo YL; Zhang YL; Zhang YB; Hu YD; Xia Z
    Huan Jing Ke Xue; 2019 Jan; 40(1):200-210. PubMed ID: 30628276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimal wavelength selection for optical spectroscopy of hemoglobin and water within a simulated light-scattering tissue.
    Marois M; Jacques SL; Paulsen KD
    J Biomed Opt; 2018 Jan; 23(7):1-5. PubMed ID: 29372632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.