These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35284202)

  • 21. Electrodiffusiophoretic motion of a charged spherical particle in a nanopore.
    Yalcin SE; Lee SY; Joo SW; Baysal O; Qian S
    J Phys Chem B; 2010 Mar; 114(11):4082-93. PubMed ID: 20196581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Asymmetric Electrokinetic Energy Conversion in Slip Conical Nanopores.
    Chang CC
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A numerical investigation of analyte size effects in nanopore sensing systems.
    Szuttor K; Kreissl P; Holm C
    J Chem Phys; 2021 Oct; 155(13):134902. PubMed ID: 34624966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Membrane Thickness on Ion Transport in pH-Regulated Zero-Depth Interfacial Nanopores.
    Zhang X; Hu N; Wang Y; Zhao Y; Wang D
    Anal Chem; 2024 Jul; 96(27):11009-11017. PubMed ID: 38934578
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore.
    Chaudhry JH; Comer J; Aksimentiev A; Olson LN
    Commun Comput Phys; 2014 Jan; 15(1):. PubMed ID: 24363784
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantification of steady-state ion transport through single conical nanopores and a nonuniform distribution of surface charges.
    Liu J; Wang D; Kvetny M; Brown W; Li Y; Wang G
    Langmuir; 2013 Jul; 29(27):8743-52. PubMed ID: 23799796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Influence of Electric Field Intensity and Particle Length on the Electrokinetic Transport of Cylindrical Particles Passing through Nanopore.
    Shi L; He X; Ge J; Zhou T; Li T; Joo SW
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32722448
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ion current rectification at nanopores in glass membranes.
    White HS; Bund A
    Langmuir; 2008 Mar; 24(5):2212-8. PubMed ID: 18225931
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electro-osmotic flow in nanoconfinement: Solid-state and protein nanopores.
    Li M; Muthukumar M
    J Chem Phys; 2024 Feb; 160(8):. PubMed ID: 38411234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transport properties and distribution of water molecules confined in hydrophobic nanopores and nanoslits.
    Liu Y; Wang Q; Lu L
    Langmuir; 2004 Aug; 20(16):6921-6. PubMed ID: 15274604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate modeling of a biological nanopore with an extended continuum framework.
    Willems K; Ruić D; L R Lucas F; Barman U; Verellen N; Hofkens J; Maglia G; Van Dorpe P
    Nanoscale; 2020 Aug; 12(32):16775-16795. PubMed ID: 32780087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glutamate, water and ion transport through a charged nanosize pore.
    De Luca G; Glavinović MI
    Biochim Biophys Acta; 2007 Feb; 1768(2):264-79. PubMed ID: 17014822
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrophoretic motion of a nanorod along the axis of a nanopore under a salt gradient.
    Joo SW; Qian S
    J Colloid Interface Sci; 2011 Apr; 356(1):331-40. PubMed ID: 21277582
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Axial forces at disk surfaces in a cylindrical nanopore.
    Tajparast M; Glavinović MI
    Biomed Microdevices; 2021 Oct; 23(4):54. PubMed ID: 34643812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Selective Transport of Ions in Charged Nanopore with Combined Multi-Physics Fields.
    Ma P; Zheng J; Zhao D; Zhang W; Lu G; Lin L; Zhao Z; Huang Z; Cao L
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A simulation study on the self-assembly of rod-coil-rod triblock copolymers within nanoslits.
    Ma ZX; Huang JH; Luo MB
    Soft Matter; 2015 Jun; 11(24):4932-43. PubMed ID: 26007667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct numerical simulation of electrokinetic translocation of a cylindrical particle through a nanopore using a Poisson-Boltzmann approach.
    Ai Y; Qian S
    Electrophoresis; 2011 Apr; 32(9):996-1005. PubMed ID: 21455912
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ion Transport in pH-Regulated Double-Barreled Nanopores.
    Zhang X; Xu M; Yang J; Hu N
    Anal Chem; 2022 Apr; 94(14):5642-5650. PubMed ID: 35352923
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling and simulation of nanoparticle separation through a solid-state nanopore.
    Jubery TZ; Prabhu AS; Kim MJ; Dutta P
    Electrophoresis; 2012 Jan; 33(2):325-33. PubMed ID: 22222977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Access resistance in protein nanopores. A structure-based computational approach.
    Aguilella-Arzo M; Aguilella VM
    Bioelectrochemistry; 2020 Feb; 131():107371. PubMed ID: 31513986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.