These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 35284714)

  • 1. Experimental Study of the Influence of Moisture Content on the Pore Structure and Permeability of Anthracite Treated by Liquid Nitrogen Freeze-Thaw.
    Li C; Nie B; Feng Z; Wang Q; Yao H; Cheng C
    ACS Omega; 2022 Mar; 7(9):7777-7790. PubMed ID: 35284714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the Evolution of Pore Structure of Anthracite Coal under Liquid-Nitrogen Freeze-Thaw Cycles.
    Yuan J; Wang Y; Chen X
    ACS Omega; 2022 Feb; 7(5):4648-4654. PubMed ID: 35155956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Experimental Study on the Cracking Effect of Liquid Nitrogen Freeze-Thaw Cycles between Anthracite and Long-Flame Coal.
    Yuan J; Chen M; Wang Y; Chen J
    ACS Omega; 2024 Jan; 9(3):3971-3979. PubMed ID: 38284043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection Effect of Liquid Nitrogen Freeze-Thaw Cycles on Full Pore Size Distribution of Different Rank Coals.
    Li Y; Ren Z; Song D; Liu W; Wang H; Guo X
    ACS Omega; 2023 Mar; 8(10):9526-9538. PubMed ID: 36936307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors controlling the mechanical properties degradation and permeability of coal subjected to liquid nitrogen freeze-thaw.
    Qin L; Zhai C; Liu S; Xu J
    Sci Rep; 2017 Jun; 7(1):3675. PubMed ID: 28623329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Freeze-Thaw Cycles on Coal Pore Structure and Gas Emission Characteristics.
    Yuan J; Xia J; Wang Y; Chen M; Chen J
    ACS Omega; 2022 May; 7(18):16087-16096. PubMed ID: 35571841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Investigation on Pore-Fracture Variations in Coal Affected by Carbon Disulfide.
    Zheng C; Li X; Li H; Jiang B; Chen Z
    ACS Omega; 2023 Oct; 8(41):38426-38440. PubMed ID: 37867664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of Pore-fracture Combination Types in Tectonic Coal Based on Mercury Intrusion Porosimetry and Nuclear Magnetic Resonance.
    Ni X; Zhao Z; Wang B; Li Z
    ACS Omega; 2020 Dec; 5(51):33225-33234. PubMed ID: 33403284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apparent Permeability Model of Coalbed Methane in Moist Coal: Coupling Gas Adsorption and Moisture Adsorption.
    Peng Z; Liu S; Deng Z; Feng H; Xiao M
    ACS Omega; 2023 Jun; 8(24):21677-21688. PubMed ID: 37360466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Liquid Nitrogen Freeze-Thaw Cycles on Pore Structure Development and Mechanical Properties of Coal.
    Li B; Shi Z; Wang Z; Huang L
    ACS Omega; 2022 Feb; 7(6):5206-5216. PubMed ID: 35187336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental study on freeze-thaw damage characteristics of coal samples of different moisture contents in liquid nitrogen.
    Wang X; Qi X; Ma H; Gao K; Li S
    Sci Rep; 2022 Nov; 12(1):18543. PubMed ID: 36329135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acidification-Induced Micronano Mechanical Properties and Microscopic Permeability Enhancement Mechanism of Coal.
    Xie H; Li X; Sui H; Cai J; Xu E; Zhao J
    Langmuir; 2024 Feb; 40(8):4496-4513. PubMed ID: 38347737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the difference of pore structure of anthracite under different particle sizes using low-temperature nitrogen adsorption method.
    Qi L; Zhou X; Peng X; Chen X; Wang Z; An F
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):5216-5230. PubMed ID: 35982386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation on the influence of the macropores in coal on CBM recovery.
    Liu X; Sang S; Zhou X; Liu S; Wang Z; Mo Y
    Heliyon; 2023 Sep; 9(9):e19558. PubMed ID: 37809915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full-scale pore characteristics in coal and their influence on the adsorption capacity of coalbed methane.
    Li Y; Liu W; Song D; Ren Z; Wang H; Guo X
    Environ Sci Pollut Res Int; 2023 Jun; 30(28):72187-72206. PubMed ID: 37166730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation on the Gas Emission Law of Water-Containing Coal across the Rank Range.
    Wang Z; Huang G; Liu X; Liu P; Lin F; Nie B; Luo B
    ACS Omega; 2024 Apr; 9(15):17289-17296. PubMed ID: 38645359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Investigation on the Impact of Coal Fines Migration on Pores and Permeability of Cataclastic Coal.
    Xie T; Wei Y; Liu Z; Li B; Cao D; Wang A
    ACS Omega; 2023 Aug; 8(34):31246-31255. PubMed ID: 37663515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of gas migration on permeability of soft coalbed methane reservoirs under true triaxial stress conditions.
    Wang G; Liu Z; Hu Y; Fan C; Wang W; Li J
    R Soc Open Sci; 2019 Oct; 6(10):190892. PubMed ID: 31824704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mineral Characteristics of Low-Rank Coal and the Effects on the Micro- and Nanoscale Pore-Fractures: A Case Study from the Zhundong Coalfield, Northwest China.
    Zhou S; Liu D; Cai Y; Wang Y; Yan D
    J Nanosci Nanotechnol; 2021 Jan; 21(1):460-471. PubMed ID: 33213645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Cyclical Microwave Modification on the Apparent Permeability of Anthracite: A Case Study of Methane Extraction in Sihe Mine, China.
    Zhang L; Kang T; Kang J; Zhang X; Zhang B; Chai Z; Zhang R; Wang Y; Kang G; Zhao G
    ACS Omega; 2021 Jun; 6(23):15001-15011. PubMed ID: 34151081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.