These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 35285136)
61. Polycystin-1 Enhances Stemmness Potential of Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Jung SH; You JE; Choi SW; Kang KS; Cho JY; Lyu J; Kim PH Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34064452 [TBL] [Abstract][Full Text] [Related]
62. Polycystin-1 regulates STAT activity by a dual mechanism. Talbot JJ; Shillingford JM; Vasanth S; Doerr N; Mukherjee S; Kinter MT; Watnick T; Weimbs T Proc Natl Acad Sci U S A; 2011 May; 108(19):7985-90. PubMed ID: 21518865 [TBL] [Abstract][Full Text] [Related]
63. mTOR Pathway in Papillary Thyroid Carcinoma: Different Contributions of mTORC1 and mTORC2 Complexes for Tumor Behavior and Tavares C; Eloy C; Melo M; Gaspar da Rocha A; Pestana A; Batista R; Bueno Ferreira L; Rios E; Sobrinho Simões M; Soares P Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29757257 [TBL] [Abstract][Full Text] [Related]
64. Modulator of the PI3K/Akt oncogenic pathway affects mTOR complex 2 in human adenocarcinoma cells. Curless BP; Uko NE; Matesic DF Invest New Drugs; 2019 Oct; 37(5):902-911. PubMed ID: 30542835 [TBL] [Abstract][Full Text] [Related]
65. [Transforming growth factor beta regulates hepatic progenitor cells migration via PI3K/AKT/mTOR/p70S6K pathway]. Pu XH; Li F; Miao XL; Ye JL; Lu LG Zhonghua Gan Zang Bing Za Zhi; 2018 Sep; 26(9):680-685. PubMed ID: 30481866 [No Abstract] [Full Text] [Related]
66. FKBP4 connects mTORC2 and PI3K to activate the PDK1/Akt-dependent cell proliferation signaling in breast cancer. Mangé A; Coyaud E; Desmetz C; Laurent E; Béganton B; Coopman P; Raught B; Solassol J Theranostics; 2019; 9(23):7003-7015. PubMed ID: 31660083 [No Abstract] [Full Text] [Related]
67. Oscillatory flow-induced proliferation of osteoblast-like cells is mediated by alphavbeta3 and beta1 integrins through synergistic interactions of focal adhesion kinase and Shc with phosphatidylinositol 3-kinase and the Akt/mTOR/p70S6K pathway. Lee DY; Li YS; Chang SF; Zhou J; Ho HM; Chiu JJ; Chien S J Biol Chem; 2010 Jan; 285(1):30-42. PubMed ID: 19889638 [TBL] [Abstract][Full Text] [Related]
68. S100A8 and S100A9 promote endothelial cell activation through the RAGE‑mediated mammalian target of rapamycin complex 2 pathway. Zhong X; Xie F; Chen L; Liu Z; Wang Q Mol Med Rep; 2020 Dec; 22(6):5293-5303. PubMed ID: 33174028 [TBL] [Abstract][Full Text] [Related]
69. The role of transient receptor potential polycystin channels in bone diseases. Katsianou MA; Skondra FG; Gargalionis AN; Piperi C; Basdra EK Ann Transl Med; 2018 Jun; 6(12):246. PubMed ID: 30069448 [TBL] [Abstract][Full Text] [Related]
70. Autoregulation of the mechanistic target of rapamycin (mTOR) complex 2 integrity is controlled by an ATP-dependent mechanism. Chen CH; Kiyan V; Zhylkibayev AA; Kazyken D; Bulgakova O; Page KE; Bersimbaev RI; Spooner E; Sarbassov DD J Biol Chem; 2013 Sep; 288(38):27019-27030. PubMed ID: 23928304 [TBL] [Abstract][Full Text] [Related]
71. Amino acids activate mammalian target of rapamycin complex 2 (mTORC2) via PI3K/Akt signaling. Tato I; Bartrons R; Ventura F; Rosa JL J Biol Chem; 2011 Feb; 286(8):6128-42. PubMed ID: 21131356 [TBL] [Abstract][Full Text] [Related]
72. Polycystin-2-dependent control of cardiomyocyte autophagy. Criollo A; Altamirano F; Pedrozo Z; Schiattarella GG; Li DL; Rivera-Mejías P; Sotomayor-Flores C; Parra V; Villalobos E; Battiprolu PK; Jiang N; May HI; Morselli E; Somlo S; de Smedt H; Gillette TG; Lavandero S; Hill JA J Mol Cell Cardiol; 2018 May; 118():110-121. PubMed ID: 29518398 [TBL] [Abstract][Full Text] [Related]
73. Activation of PI3K/Akt/mTOR signaling pathway triggered by PTEN downregulation in the pathogenesis of Crohn's disease. Long SH; He Y; Chen MH; Cao K; Chen YJ; Chen BL; Mao R; Zhang SH; Zhu ZH; Zeng ZR; Hu PJ J Dig Dis; 2013 Dec; 14(12):662-9. PubMed ID: 23962154 [TBL] [Abstract][Full Text] [Related]
74. Dysregulated PDGFRα signaling alters coronal suture morphogenesis and leads to craniosynostosis through endochondral ossification. He F; Soriano P Development; 2017 Nov; 144(21):4026-4036. PubMed ID: 28947535 [TBL] [Abstract][Full Text] [Related]
75. Qian Y; Yan Y; Lu H; Zhou T; Lv M; Fang C; Hou J; Li W; Chen X; Sun H; Li Y; Wang Z; Zhao N; Gu Y; Ding Y; Liu Y Anticancer Agents Med Chem; 2019; 19(14):1754-1761. PubMed ID: 31364518 [TBL] [Abstract][Full Text] [Related]
76. Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: a tale of two complexes. Jhanwar-Uniyal M; Gillick JL; Neil J; Tobias M; Thwing ZE; Murali R Adv Biol Regul; 2015 Jan; 57():64-74. PubMed ID: 25442674 [TBL] [Abstract][Full Text] [Related]
78. Craniosynostosis: molecular pathways and future pharmacologic therapy. Senarath-Yapa K; Chung MT; McArdle A; Wong VW; Quarto N; Longaker MT; Wan DC Organogenesis; 2012; 8(4):103-13. PubMed ID: 23249483 [TBL] [Abstract][Full Text] [Related]
79. Effects of MicroRNA-19b on the Proliferation, Apoptosis, and Migration of Wilms' Tumor Cells Via the PTEN/PI3K/AKT Signaling Pathway. Liu GL; Yang HJ; Liu B; Liu T J Cell Biochem; 2017 Oct; 118(10):3424-3434. PubMed ID: 28322459 [TBL] [Abstract][Full Text] [Related]
80. Polycystin-1: function as a mechanosensor. Dalagiorgou G; Basdra EK; Papavassiliou AG Int J Biochem Cell Biol; 2010 Oct; 42(10):1610-3. PubMed ID: 20601082 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]