These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 35285349)

  • 21. Rational Design of Nanotherapeutics Based on the Five Features Principle for Potent Elimination of Cancer Stem Cells.
    Zhang Z; Deng Q; Xiao C; Li Z; Yang X
    Acc Chem Res; 2022 Feb; 55(4):526-536. PubMed ID: 35077133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Edible exosome-like nanoparticles from portulaca oleracea L mitigate DSS-induced colitis via facilitating double-positive CD4
    Zhu MZ; Xu HM; Liang YJ; Xu J; Yue NN; Zhang Y; Tian CM; Yao J; Wang LS; Nie YQ; Li DF
    J Nanobiotechnology; 2023 Aug; 21(1):309. PubMed ID: 37653406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer
    Chen Q; Li Q; Liang Y; Zu M; Chen N; Canup BSB; Luo L; Wang C; Zeng L; Xiao B
    Acta Pharm Sin B; 2022 Feb; 12(2):907-923. PubMed ID: 35256954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanotechnology-based Drug Delivery, Metabolism and Toxicity.
    Malaviya P; Shukal D; Vasavada AR
    Curr Drug Metab; 2019; 20(14):1167-1190. PubMed ID: 31902350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multifunctional Nanoparticles in Precise Cancer Treatment: Considerations in Design and Functionalization of Nanocarriers.
    Lu L; Kang S; Sun C; Sun C; Guo Z; Li J; Zhang T; Luo X; Liu B
    Curr Top Med Chem; 2020; 20(27):2427-2441. PubMed ID: 32842941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterizing Nanoparticle Isolated by Yam Bean (Pachyrhizus erosus) as a Potential Agent for Nanocosmetics: An in vitro and in vivo Approaches.
    Kusnandar MR; Wibowo I; Barlian A
    Pharm Nanotechnol; 2024 Jan; ():. PubMed ID: 38317471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neutrophil-mediated delivery of nanotherapeutics across blood vessel barrier.
    Dong X; Chu D; Wang Z
    Ther Deliv; 2018 Jan; 9(1):29-35. PubMed ID: 29216803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plant derived edible nanoparticles as a new therapeutic approach against diseases.
    Zhang M; Viennois E; Xu C; Merlin D
    Tissue Barriers; 2016; 4(2):e1134415. PubMed ID: 27358751
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tumor-targeting delivery of herb-based drugs with cell-penetrating/tumor-targeting peptide-modified nanocarriers.
    Kebebe D; Liu Y; Wu Y; Vilakhamxay M; Liu Z; Li J
    Int J Nanomedicine; 2018; 13():1425-1442. PubMed ID: 29563797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles.
    Mu J; Zhuang X; Wang Q; Jiang H; Deng ZB; Wang B; Zhang L; Kakar S; Jun Y; Miller D; Zhang HG
    Mol Nutr Food Res; 2014 Jul; 58(7):1561-73. PubMed ID: 24842810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives.
    Ali ES; Sharker SM; Islam MT; Khan IN; Shaw S; Rahman MA; Uddin SJ; Shill MC; Rehman S; Das N; Ahmad S; Shilpi JA; Tripathi S; Mishra SK; Mubarak MS
    Semin Cancer Biol; 2021 Feb; 69():52-68. PubMed ID: 32014609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitric oxide-driven nanotherapeutics for cancer treatment.
    Zhao Z; Shan X; Zhang H; Shi X; Huang P; Sun J; He Z; Luo C; Zhang S
    J Control Release; 2023 Oct; 362():151-169. PubMed ID: 37633361
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extracellularly activatable nanocarriers for drug delivery to tumors.
    Abouelmagd SA; Hyun H; Yeo Y
    Expert Opin Drug Deliv; 2014 Oct; 11(10):1601-1618. PubMed ID: 24950343
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanotherapeutics and Nanotheragnostics for Cancers: Properties, Pharmacokinetics, Biopharmaceutics, and Biosafety.
    Morsink M; Parente L; Silva F; Abrantes A; Ramos A; Primo I; Willemen N; Sanchez-Lopez E; Severino P; Souto EB
    Curr Pharm Des; 2022; 28(2):104-115. PubMed ID: 34348617
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lipid-based nanocarriers for enhanced delivery of plant-derived bioactive molecules: a comprehensive review.
    Kothapalli P; Vasanthan M
    Ther Deliv; 2024 Feb; 15(2):135-155. PubMed ID: 38214118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Radiation-assisted strategies provide new perspectives to improve the nanoparticle delivery to tumor.
    Zhang D; He J; Zhou M
    Adv Drug Deliv Rev; 2023 Feb; 193():114642. PubMed ID: 36529190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoparticles for Cancer Targeting: Current and Future Directions.
    Swain S; Sahu PK; Beg S; Babu SM
    Curr Drug Deliv; 2016; 13(8):1290-1302. PubMed ID: 27411485
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Research progress and application opportunities of nanoparticle-protein corona complexes.
    Huang W; Xiao G; Zhang Y; Min W
    Biomed Pharmacother; 2021 Jul; 139():111541. PubMed ID: 33848776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Research Progress in Bioinspired Drug Delivery Systems.
    Tong Q; Qiu N; Ji J; Ye L; Zhai G
    Expert Opin Drug Deliv; 2020 Sep; 17(9):1269-1288. PubMed ID: 32543953
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: recent advances and challenges.
    Zhang M; Zang X; Wang M; Li Z; Qiao M; Hu H; Chen D
    J Mater Chem B; 2019 Apr; 7(15):2421-2433. PubMed ID: 32255119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.