These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35285643)

  • 1. Directivity-Enhanced Detection of a Single Nanoparticle Using a Plasmonic Slot Antenna.
    Wu B; Lou Y; Wu D; Min Q; Wan X; Zhang H; Yu Y; Ma J; Si G; Pang Y
    Nano Lett; 2022 Mar; 22(6):2374-2380. PubMed ID: 35285643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overcoming Diffusion-Limited Trapping in Nanoaperture Tweezers Using Opto-Thermal-Induced Flow.
    Kotnala A; Kollipara PS; Li J; Zheng Y
    Nano Lett; 2020 Jan; 20(1):768-779. PubMed ID: 31834809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beaming circularly polarized photons from quantum dots coupled with plasmonic spiral antenna.
    Rui G; Chen W; Abeysinghe DC; Nelson RL; Zhan Q
    Opt Express; 2012 Aug; 20(17):19297-304. PubMed ID: 23038571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytic approach to study a hybrid plasmonic waveguide-fed and numerically design a nano-antenna based on the new director.
    Khodadadi M; Nozhat N; Moshiri SMM
    Opt Express; 2020 Feb; 28(3):3305-3330. PubMed ID: 32122003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enabling Self-Induced Back-Action Trapping of Gold Nanoparticles in Metamaterial Plasmonic Tweezers.
    Bouloumis TD; Kotsifaki DG; Nic Chormaic S
    Nano Lett; 2023 Jun; 23(11):4723-4731. PubMed ID: 37256850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array.
    Chen CK; Chang MH; Wu HT; Lee YC; Yen TJ
    Biosens Bioelectron; 2014 Oct; 60():343-50. PubMed ID: 24836017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas.
    Zhang W; Huang L; Santschi C; Martin OJ
    Nano Lett; 2010 Mar; 10(3):1006-11. PubMed ID: 20151698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film.
    Pang Y; Gordon R
    Nano Lett; 2011 Sep; 11(9):3763-7. PubMed ID: 21838243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical forces in hybrid plasmonic waveguides.
    Yang X; Liu Y; Oulton RF; Yin X; Zhang X
    Nano Lett; 2011 Feb; 11(2):321-8. PubMed ID: 21229998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring the directivity of both excitation and emission of dipole simultaneously with two-colored plasmonic antenna.
    Xi Z; Lu Y; Yu W; Yao P; Wang P; Ming H
    Opt Express; 2013 Dec; 21(24):29365-73. PubMed ID: 24514490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-plane subwavelength optical capsule for lab-on-a-chip nano-tweezers.
    Minin OV; Chen WY; Chien SC; Cheng CH; Minin IV; Liu CY
    Opt Lett; 2022 Feb; 47(4):794-797. PubMed ID: 35167527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free free-solution nanoaperture optical tweezers for single molecule protein studies.
    Al Balushi AA; Kotnala A; Wheaton S; Gelfand RM; Rajashekara Y; Gordon R
    Analyst; 2015 Jul; 140(14):4760-78. PubMed ID: 25734189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical trapping of nanoparticles.
    Bergeron J; Zehtabi-Oskuie A; Ghaffari S; Pang Y; Gordon R
    J Vis Exp; 2013 Jan; (71):e4424. PubMed ID: 23354173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale Refractive Index Sensors with High Figures of Merit
    Gao B; Wang Y; Zhang T; Xu Y; He A; Dai L; Zhang J
    ACS Nano; 2019 Aug; 13(8):9131-9138. PubMed ID: 31390178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inversion of gradient forces for high refractive index particles in optical trapping.
    Ambrosio LA; Hernández-Figueroa HE
    Opt Express; 2010 Mar; 18(6):5802-8. PubMed ID: 20389597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive compact refractive index sensor based on phase-shifted sidewall Bragg gratings in slot waveguide.
    Wang X; Madsen CK
    Appl Opt; 2014 Jan; 53(1):96-103. PubMed ID: 24513995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanojet Trapping of a Single Sub-10 nm Upconverting Nanoparticle in the Full Liquid Water Temperature Range.
    Lu D; Pedroni M; Labrador-Páez L; Marqués MI; Jaque D; Haro-González P
    Small; 2021 Feb; 17(7):e2006764. PubMed ID: 33502123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Performance Molecular Detection Biosensor Using Plasmonic Spiral Nanoantenna Based on Optical Fiber.
    Elrashidi A
    J Biomed Nanotechnol; 2020 May; 16(5):715-720. PubMed ID: 32919490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.