BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35286519)

  • 1. Kaempferol suppresses androgen-dependent and androgen-independent prostate cancer by regulating Ki67 expression.
    Zhang Y; Chen J; Fang W; Liang K; Li X; Zhang F; Pang Y; Fang G; Wang X
    Mol Biol Rep; 2022 Jun; 49(6):4607-4617. PubMed ID: 35286519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kaempferol Promotes Apoptosis While Inhibiting Cell Proliferation via Androgen-Dependent Pathway and Suppressing Vasculogenic Mimicry and Invasion in Prostate Cancer.
    Da J; Xu M; Wang Y; Li W; Lu M; Wang Z
    Anal Cell Pathol (Amst); 2019; 2019():1907698. PubMed ID: 31871879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kaempferol inhibits benign prostatic hyperplasia by resisting the action of androgen.
    Wang X; Zhu J; Yan H; Shi M; Zheng Q; Wang Y; Zhu Y; Miao L; Gao X
    Eur J Pharmacol; 2021 Sep; 907():174251. PubMed ID: 34129879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 6-(3,4-Dihydro-1H-isoquinoline-2-yl)-N-(6-methoxypyridine-2-yl) nicotinamide-26 (DIMN-26) decreases cell proliferation by induction of apoptosis and downregulation of androgen receptor signaling in human prostate cancer cells.
    Choi HE; Shin JS; Leem DG; Kim SD; Cho WJ; Lee KT
    Chem Biol Interact; 2016 Dec; 260():196-207. PubMed ID: 27720946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. α-Terthienyl induces prostate cancer cell death through inhibiting androgen receptor expression.
    Gan X; Huang H; Wen J; Liu K; Yang Y; Li X; Fang G; Liu Y; Wang X
    Biomed Pharmacother; 2022 Aug; 152():113266. PubMed ID: 35691152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal transduction pathways in androgen-dependent and -independent prostate cancer cell proliferation.
    Ghosh PM; Malik SN; Bedolla RG; Wang Y; Mikhailova M; Prihoda TJ; Troyer DA; Kreisberg JI
    Endocr Relat Cancer; 2005 Mar; 12(1):119-34. PubMed ID: 15788644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metformin represses androgen-dependent and androgen-independent prostate cancers by targeting androgen receptor.
    Wang Y; Liu G; Tong D; Parmar H; Hasenmayer D; Yuan W; Zhang D; Jiang J
    Prostate; 2015 Aug; 75(11):1187-96. PubMed ID: 25894097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel selective androgen receptor modulator (SARM) MK-4541 exerts anti-androgenic activity in the prostate cancer xenograft R-3327G and anabolic activity on skeletal muscle mass & function in castrated mice.
    Chisamore MJ; Gentile MA; Dillon GM; Baran M; Gambone C; Riley S; Schmidt A; Flores O; Wilkinson H; Alves SE
    J Steroid Biochem Mol Biol; 2016 Oct; 163():88-97. PubMed ID: 27106747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Androgen receptor as a regulator of ZEB2 expression and its implications in epithelial-to-mesenchymal transition in prostate cancer.
    Jacob S; Nayak S; Fernandes G; Barai RS; Menon S; Chaudhari UK; Kholkute SD; Sachdeva G
    Endocr Relat Cancer; 2014 Jun; 21(3):473-86. PubMed ID: 24812058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benzyldihydroxyoctenone, a novel nonsteroidal antiandrogen, shows differential apoptotic induction in prostate cancer cells in response to their androgen responsiveness.
    Suh H; Oh HL; Lee CH
    J Microbiol Biotechnol; 2011 May; 21(5):540-4. PubMed ID: 21617354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of FLIP expression by androgens protects prostate cancer cells from TRAIL-mediated apoptosis.
    Raclaw KA; Heemers HV; Kidd EM; Dehm SM; Tindall DJ
    Prostate; 2008 Nov; 68(15):1696-706. PubMed ID: 18726983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indole-3-carbinol and 3',3'-diindolylmethane modulate androgen's effect on C-C chemokine ligand 2 and monocyte attraction to prostate cancer cells.
    Kim EK; Kim YS; Milner JA; Wang TT
    Cancer Prev Res (Phila); 2013 Jun; 6(6):519-29. PubMed ID: 23585426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suberoylanilide hydroxamic acid (vorinostat) represses androgen receptor expression and acts synergistically with an androgen receptor antagonist to inhibit prostate cancer cell proliferation.
    Marrocco DL; Tilley WD; Bianco-Miotto T; Evdokiou A; Scher HI; Rifkind RA; Marks PA; Richon VM; Butler LM
    Mol Cancer Ther; 2007 Jan; 6(1):51-60. PubMed ID: 17218635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of an anabolic selective androgen receptor modulator that actively induces death of androgen-independent prostate cancer cells.
    Schmidt A; Meissner RS; Gentile MA; Chisamore MJ; Opas EE; Scafonas A; Cusick TE; Gambone C; Pennypacker B; Hodor P; Perkins JJ; Bai C; Ferraro D; Bettoun DJ; Wilkinson HA; Alves SE; Flores O; Ray WJ
    J Steroid Biochem Mol Biol; 2014 Sep; 143():29-39. PubMed ID: 24565564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The novel long noncoding RNA LOC283070 is involved in the transition of LNCaP cells into androgen-independent cells via its interaction with PHB2.
    Zhang Y; Wang LN; Lin YN; Xing YX; Shi Y; Zhao J; Chen WW; Han B
    Asian J Androl; 2018; 20(5):511-517. PubMed ID: 29956684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of PXD101 (belinostat) on androgen-dependent and androgen-independent prostate cancer models.
    Gravina GL; Marampon F; Giusti I; Carosa E; Di Sante S; Ricevuto E; Dolo V; Tombolini V; Jannini EA; Festuccia C
    Int J Oncol; 2012 Mar; 40(3):711-20. PubMed ID: 22134754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation.
    Kobayashi T; Shimizu Y; Terada N; Yamasaki T; Nakamura E; Toda Y; Nishiyama H; Kamoto T; Ogawa O; Inoue T
    Prostate; 2010 Jun; 70(8):866-74. PubMed ID: 20127734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of coordinated molecular alterations in the development of androgen-independent prostate cancer: an in vitro model that corroborates clinical observations.
    Shi Y; Chatterjee SJ; Brands FH; Shi SR; Pootrakul L; Taylor CR; Datar R; Cote RJ
    BJU Int; 2006 Jan; 97(1):170-8. PubMed ID: 16336351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Difference in protein expression profile and chemotherapy drugs response of different progression stages of LNCaP sublines and other human prostate cancer cells.
    Lin HP; Lin CY; Hsiao PH; Wang HD; Jiang SS; Hsu JM; Jim WT; Chen M; Kung HJ; Chuu CP
    PLoS One; 2013; 8(12):e82625. PubMed ID: 24349321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-density lipoprotein induces proliferation and migration of human prostate androgen-independent cancer cells by an ABCA1-dependent mechanism.
    Sekine Y; Demosky SJ; Stonik JA; Furuya Y; Koike H; Suzuki K; Remaley AT
    Mol Cancer Res; 2010 Sep; 8(9):1284-94. PubMed ID: 20671065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.