BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35286669)

  • 1. Photoactivated Adenylyl Cyclases as Optogenetic Modulators of Neuronal Activity.
    Henss T; Schneider M; Vettkötter D; Costa WS; Liewald JF; Gottschalk A
    Methods Mol Biol; 2022; 2483():61-76. PubMed ID: 35286669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoactivated adenylyl cyclases as optogenetic modulators of neuronal activity.
    Costa WS; Liewald J; Gottschalk A
    Methods Mol Biol; 2014; 1148():161-75. PubMed ID: 24718801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic tools for manipulation of cyclic nucleotides functionally coupled to cyclic nucleotide-gated channels.
    Henß T; Nagpal J; Gao S; Scheib U; Pieragnolo A; Hirschhäuser A; Schneider-Warme F; Hegemann P; Nagel G; Gottschalk A
    Br J Pharmacol; 2022 Jun; 179(11):2519-2537. PubMed ID: 33733470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic manipulation of neuronal and cardiomyocyte functions in zebrafish using microbial rhodopsins and adenylyl cyclases.
    Hagio H; Koyama W; Hosaka S; Song AD; Narantsatsral J; Matsuda K; Shimizu T; Hososhima S; Tsunoda SP; Kandori H; Hibi M
    Elife; 2023 Aug; 12():. PubMed ID: 37589546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Bergs A; Henss T; Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2022; 2468():89-115. PubMed ID: 35320562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and engineering of photoactivated adenylyl cyclases.
    Stüven B; Stabel R; Ohlendorf R; Beck J; Schubert R; Möglich A
    Biol Chem; 2019 Feb; 400(3):429-441. PubMed ID: 30763033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potassium channel-based optogenetic silencing.
    Bernal Sierra YA; Rost BR; Pofahl M; Fernandes AM; Kopton RA; Moser S; Holtkamp D; Masala N; Beed P; Tukker JJ; Oldani S; Bönigk W; Kohl P; Baier H; Schneider-Warme F; Hegemann P; Beck H; Seifert R; Schmitz D
    Nat Commun; 2018 Nov; 9(1):4611. PubMed ID: 30397200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of cyclic nucleotide-mediated cellular signaling and gene expression using photoactivated adenylyl cyclase as an optogenetic tool.
    Tanwar M; Khera L; Haokip N; Kaul R; Naorem A; Kateriya S
    Sci Rep; 2017 Sep; 7(1):12048. PubMed ID: 28935957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoactivated Adenylyl Cyclases: Fundamental Properties and Applications.
    Iseki M; Park SY
    Adv Exp Med Biol; 2021; 1293():129-139. PubMed ID: 33398810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Bacteriophytochrome-coupled Photoactivated Adenylyl Cyclases for Enhanced Optogenetic cAMP Modulation.
    Xu Q; Vogt A; Frechen F; Yi C; Küçükerden M; Ngum N; Sitjà-Roqueta L; Greiner A; Parri R; Masana M; Wenger N; Wachten D; Möglich A
    J Mol Biol; 2024 Mar; 436(5):168257. PubMed ID: 37657609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical Characterization of the Engineered Soluble Photoactivated Guanylate Cyclases from Microbes Expands Optogenetic Tools.
    Tanwar M; Sharma K; Moar P; Kateriya S
    Appl Biochem Biotechnol; 2018 Aug; 185(4):1014-1028. PubMed ID: 29404907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-guided design and functional characterization of an artificial red light-regulated guanylate/adenylate cyclase for optogenetic applications.
    Etzl S; Lindner R; Nelson MD; Winkler A
    J Biol Chem; 2018 Jun; 293(23):9078-9089. PubMed ID: 29695503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compartmentalized cAMP Generation by Engineered Photoactivated Adenylyl Cyclases.
    O'Banion CP; Vickerman BM; Haar L; Lawrence DS
    Cell Chem Biol; 2019 Oct; 26(10):1393-1406.e7. PubMed ID: 31353320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells.
    Blain-Hartung M; Rockwell NC; Moreno MV; Martin SS; Gan F; Bryant DA; Lagarias JC
    J Biol Chem; 2018 Jun; 293(22):8473-8483. PubMed ID: 29632072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Illuminating neural circuits and behaviour in Caenorhabditis elegans with optogenetics.
    Fang-Yen C; Alkema MJ; Samuel AD
    Philos Trans R Soc Lond B Biol Sci; 2015 Sep; 370(1677):20140212. PubMed ID: 26240427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interneurons Regulate Locomotion Quiescence via Cyclic Adenosine Monophosphate Signaling During Stress-Induced Sleep in
    Cianciulli A; Yoslov L; Buscemi K; Sullivan N; Vance RT; Janton F; Szurgot MR; Buerkert T; Li E; Nelson MD
    Genetics; 2019 Sep; 213(1):267-279. PubMed ID: 31292211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering adenylate cyclases regulated by near-infrared window light.
    Ryu MH; Kang IH; Nelson MD; Jensen TM; Lyuksyutova AI; Siltberg-Liberles J; Raizen DM; Gomelsky M
    Proc Natl Acad Sci U S A; 2014 Jul; 111(28):10167-72. PubMed ID: 24982160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic manipulation of neural activity in C. elegans: from synapse to circuits and behaviour.
    Husson SJ; Gottschalk A; Leifer AM
    Biol Cell; 2013 Jun; 105(6):235-50. PubMed ID: 23458457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating cyclic AMP signaling in subcellular domains with optogenetic tools and fluorescent biosensors.
    Klausen C; Kaiser F; Stüven B; Hansen JN; Wachten D
    Biochem Soc Trans; 2019 Dec; 47(6):1733-1747. PubMed ID: 31724693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.