These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35286782)

  • 41. In vivo biocompatibility and osteogenesis of electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone)/nano-hydroxyapatite composite scaffold.
    Fu S; Ni P; Wang B; Chu B; Peng J; Zheng L; Zhao X; Luo F; Wei Y; Qian Z
    Biomaterials; 2012 Nov; 33(33):8363-71. PubMed ID: 22921926
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioinspired bimodal micro-nanofibrous scaffolds promote the tenogenic differentiation of tendon stem/progenitor cells for achilles tendon regeneration.
    Yin Z; Sun L; Shi L; Nie H; Dai J; Zhang C
    Biomater Sci; 2022 Feb; 10(3):753-769. PubMed ID: 34985056
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Into-Tunnel Repair Versus Onto-Surface Repair for Rotator Cuff Tears in a Rabbit Model.
    Li X; Shen P; Su W; Zhao S; Zhao J
    Am J Sports Med; 2018 Jun; 46(7):1711-1719. PubMed ID: 29620913
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced osteogenic differentiation of mesenchymal stem cells on metal-organic framework based on copper, zinc, and imidazole coated poly-l-lactic acid nanofiber scaffolds.
    Telgerd MD; Sadeghinia M; Birhanu G; Daryasari MP; Zandi-Karimi A; Sadeghinia A; Akbarijavar H; Karami MH; Seyedjafari E
    J Biomed Mater Res A; 2019 Aug; 107(8):1841-1848. PubMed ID: 31033136
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrospun nanofibrous 3D scaffold for bone tissue engineering.
    Eap S; Ferrand A; Palomares CM; Hébraud A; Stoltz JF; Mainard D; Schlatter G; Benkirane-Jessel N
    Biomed Mater Eng; 2012; 22(1-3):137-41. PubMed ID: 22766712
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrospun polycaprolactone/hydroxyapatite/ZnO films as potential biomaterials for application in bone-tendon interface repair.
    He X; Huang Z; Liu W; Liu Y; Qian H; Lei T; Hua L; Hu Y; Zhang Y; Lei P
    Colloids Surf B Biointerfaces; 2021 Aug; 204():111825. PubMed ID: 33984615
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Osteochondral tissue regenerated via a strategy by stacking pre-differentiated BMSC sheet on fibrous mesh in a gradient.
    Jin L; Zhao W; Ren B; Li L; Hu X; Zhang X; Cai Q; Ao Y; Yang X
    Biomed Mater; 2019 Nov; 14(6):065017. PubMed ID: 31574486
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In situ regeneration of bone-to-tendon structures: Comparisons between costal-cartilage derived stem cells and BMSCs in the rat model.
    Zuo R; Liu J; Zhang Y; Zhang H; Li J; Wu J; Ji Y; Mao S; Li C; Zhou Y; Wu Y; Cai D; Sun Y; Zhang C
    Acta Biomater; 2022 Jun; 145():62-76. PubMed ID: 35381396
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrospun scaffolds for multiple tissues regeneration in vivo through topography dependent induction of lineage specific differentiation.
    Yin Z; Chen X; Song HX; Hu JJ; Tang QM; Zhu T; Shen WL; Chen JL; Liu H; Heng BC; Ouyang HW
    Biomaterials; 2015 Mar; 44():173-85. PubMed ID: 25617136
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In situ tissue engineering of the tendon-to-bone interface by endogenous stem/progenitor cells.
    Tarafder S; Brito JA; Minhas S; Effiong L; Thomopoulos S; Lee CH
    Biofabrication; 2019 Nov; 12(1):015008. PubMed ID: 31561236
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Osteogenic differentiation and bone regeneration of iPSC-MSCs supported by a biomimetic nanofibrous scaffold.
    Xie J; Peng C; Zhao Q; Wang X; Yuan H; Yang L; Li K; Lou X; Zhang Y
    Acta Biomater; 2016 Jan; 29():365-379. PubMed ID: 26441129
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regeneration techniques for bone-to-tendon and muscle-to-tendon interfaces reconstruction.
    Baldino L; Cardea S; Maffulli N; Reverchon E
    Br Med Bull; 2016 Mar; 117(1):25-37. PubMed ID: 26837850
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In Vivo Evaluation of Adipose-Derived Stromal Cells Delivered with a Nanofiber Scaffold for Tendon-to-Bone Repair.
    Lipner J; Shen H; Cavinatto L; Liu W; Havlioglu N; Xia Y; Galatz LM; Thomopoulos S
    Tissue Eng Part A; 2015 Nov; 21(21-22):2766-74. PubMed ID: 26414599
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative Evaluation of the Book-Type Acellular Bone Scaffold and Fibrocartilage Scaffold for Bone-Tendon Healing.
    Lu H; Tang Y; Liu F; Xie S; Qu J; Chen C
    J Orthop Res; 2019 Aug; 37(8):1709-1722. PubMed ID: 30977542
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering.
    Ni P; Fu S; Fan M; Guo G; Shi S; Peng J; Luo F; Qian Z
    Int J Nanomedicine; 2011; 6():3065-75. PubMed ID: 22163160
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying.
    Hejazi F; Mirzadeh H
    J Mater Sci Mater Med; 2016 Sep; 27(9):143. PubMed ID: 27550014
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of tendon derived stem/progenitor cells and extracellular matrix components in the bone tendon junction repair.
    Shengnan Q; Bennett S; Wen W; Aiguo L; Jiake X
    Bone; 2021 Dec; 153():116172. PubMed ID: 34506992
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gradient Biomineralized Silk Fibroin Nanofibrous Scaffold with Osteochondral Inductivity for Integration of Tendon to Bone.
    Chen P; Li L; Dong L; Wang S; Huang Z; Qian Y; Wang C; Liu W; Yang L
    ACS Biomater Sci Eng; 2021 Mar; 7(3):841-851. PubMed ID: 33715375
    [TBL] [Abstract][Full Text] [Related]  

  • 59. BMP-2 Modified Electrospun Scaffold for Acetabular Labral Reconstruction Promotes Collagen Fiber Regeneration in a Porcine Model.
    Wu R; Gao G; Zhang S; Liu R; Dong H; Xu Y
    Am J Sports Med; 2022 Mar; 50(3):757-768. PubMed ID: 35112595
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration.
    Chen S; Jian Z; Huang L; Xu W; Liu S; Song D; Wan Z; Vaughn A; Zhan R; Zhang C; Wu S; Hu M; Li J
    Int J Nanomedicine; 2015; 10():3815-27. PubMed ID: 26082632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.