BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 35287119)

  • 1. Decoding ECoG signal into 3D hand translation using deep learning.
    Śliwowski M; Martin M; Souloumiac A; Blanchart P; Aksenova T
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35287119
    [No Abstract]   [Full Text] [Related]  

  • 2. Impact of dataset size and long-term ECoG-based BCI usage on deep learning decoders performance.
    Śliwowski M; Martin M; Souloumiac A; Blanchart P; Aksenova T
    Front Hum Neurosci; 2023; 17():1111645. PubMed ID: 37007675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and accurate decoding of finger movements from ECoG through Riemannian features and modern machine learning techniques.
    Yao L; Zhu B; Shoaran M
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 35078156
    [No Abstract]   [Full Text] [Related]  

  • 4. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding of finger trajectory from ECoG using deep learning.
    Xie Z; Schwartz O; Prasad A
    J Neural Eng; 2018 Jun; 15(3):036009. PubMed ID: 29182152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding and interpreting cortical signals with a compact convolutional neural network.
    Petrosyan A; Sinkin M; Lebedev M; Ossadtchi A
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33524962
    [No Abstract]   [Full Text] [Related]  

  • 7. Benefits of deep learning classification of continuous noninvasive brain-computer interface control.
    Stieger JR; Engel SA; Suma D; He B
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34038873
    [No Abstract]   [Full Text] [Related]  

  • 8. Decoding three-dimensional reaching movements using electrocorticographic signals in humans.
    Bundy DT; Pahwa M; Szrama N; Leuthardt EC
    J Neural Eng; 2016 Apr; 13(2):026021. PubMed ID: 26902372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The current state of electrocorticography-based brain-computer interfaces.
    Miller KJ; Hermes D; Staff NP
    Neurosurg Focus; 2020 Jul; 49(1):E2. PubMed ID: 32610290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Source Aware Deep Learning Framework for Hand Kinematic Reconstruction Using EEG Signal.
    Pancholi S; Giri A; Jain A; Kumar L; Roy S
    IEEE Trans Cybern; 2023 Jul; 53(7):4094-4106. PubMed ID: 35533152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Online adaptive group-wise sparse Penalized Recursive Exponentially Weighted N-way Partial Least Square for epidural intracranial BCI.
    Moly A; Aksenov A; Martel F; Aksenova T
    Front Hum Neurosci; 2023; 17():1075666. PubMed ID: 36950147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remapping cortical modulation for electrocorticographic brain-computer interfaces: a somatotopy-based approach in individuals with upper-limb paralysis.
    Degenhart AD; Hiremath SV; Yang Y; Foldes S; Collinger JL; Boninger M; Tyler-Kabara EC; Wang W
    J Neural Eng; 2018 Apr; 15(2):026021. PubMed ID: 29160240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review of Motor Brain-Computer Interfaces Using Intracranial Electroencephalography Based on Surface Electrodes and Depth Electrodes.
    Wu X; Metcalfe B; He S; Tan H; Zhang D
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2408-2431. PubMed ID: 38949928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An adaptive closed-loop ECoG decoder for long-term and stable bimanual control of an exoskeleton by a tetraplegic.
    Moly A; Costecalde T; Martel F; Martin M; Larzabal C; Karakas S; Verney A; Charvet G; Chabardes S; Benabid AL; Aksenova T
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35234665
    [No Abstract]   [Full Text] [Related]  

  • 16. Imagined character recognition through EEG signals using deep convolutional neural network.
    Ullah S; Halim Z
    Med Biol Eng Comput; 2021 May; 59(5):1167-1183. PubMed ID: 33945075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding of Hand Gestures from Electrocorticography with LSTM Based Deep Neural Network.
    Pradeepkumar J; Anandakumar M; Kugathasan V; Lalitharatne TD; De Silva AC; Kappel SL
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():420-423. PubMed ID: 34891323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time control of a prosthetic hand using human electrocorticography signals.
    Yanagisawa T; Hirata M; Saitoh Y; Goto T; Kishima H; Fukuma R; Yokoi H; Kamitani Y; Yoshimine T
    J Neurosurg; 2011 Jun; 114(6):1715-22. PubMed ID: 21314273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term stability of the chronic epidural wireless recorder WIMAGINE in tetraplegic patients.
    Larzabal C; Bonnet S; Costecalde T; Auboiroux V; Charvet G; Chabardes S; Aksenova T; Sauter-Starace F
    J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34425566
    [No Abstract]   [Full Text] [Related]  

  • 20. Generalized neural decoders for transfer learning across participants and recording modalities.
    Peterson SM; Steine-Hanson Z; Davis N; Rao RPN; Brunton BW
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33418552
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.