These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35287318)

  • 1. Controlled electric vehicle charging for reverse power flow correction in the distribution network with high photovoltaic penetration: case of an expanded IEEE 13 node test network.
    Tounsi Fokui WS; Saulo M; Ngoo L
    Heliyon; 2022 Mar; 8(3):e09058. PubMed ID: 35287318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal Energy Management Framework for Truck-Mounted Mobile Charging Stations Considering Power Distribution System Operating Conditions.
    Jeon S; Choi DH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning Based Muti-Objective Reactive Power Optimization of Distribution Network with PV and EVs.
    Wu R; Liu S
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Reinforcement Learning for Charging Scheduling of Electric Vehicles Considering Distribution Network Voltage Stability.
    Liu D; Zeng P; Cui S; Song C
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Two-Stage Multi-Agent EV Charging Coordination Scheme for Maximizing Grid Performance and Customer Satisfaction.
    Amin A; Mahmood A; Khan AR; Arshad K; Assaleh K; Zoha A
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel spatial-temporal model for charging plug hybrid electrical vehicles based on traffic-flow analysis and Monte Carlo method.
    Afshar M; Mohammadi MR; Abedini M
    ISA Trans; 2021 Aug; 114():263-276. PubMed ID: 33388146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Private versus Shared, Automated Electric Vehicles for U.S. Personal Mobility: Energy Use, Greenhouse Gas Emissions, Grid Integration, and Cost Impacts.
    Sheppard CJR; Jenn AT; Greenblatt JB; Bauer GS; Gerke BF
    Environ Sci Technol; 2021 Mar; 55(5):3229-3239. PubMed ID: 33566604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US.
    Challa R; Kamath D; Anctil A
    J Environ Manage; 2022 Apr; 308():114592. PubMed ID: 35121453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing the life cycle environmental impact of electric vehicles through emissions-responsive charging.
    Tang Y; Cockerill TT; Pimm AJ; Yuan X
    iScience; 2021 Dec; 24(12):103499. PubMed ID: 34927031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradable transportation network with the addition of electric vehicles: Network equilibrium analysis.
    Zhang R; Yao E; Yang Y
    PLoS One; 2017; 12(9):e0184693. PubMed ID: 28886167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resource management with kernel-based approaches for grid-connected solar photovoltaic systems.
    Kurukuru VSB; Haque A; Khan MA; Blaabjerg F
    Heliyon; 2021 Dec; 7(12):e08609. PubMed ID: 35005272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Idealized analysis of relative values of bidirectional versus unidirectional electric vehicle charging in deeply decarbonized electricity systems.
    Dioha MO; Ruggles TH; Ashfaq S; Caldeira K
    iScience; 2022 Sep; 25(9):104906. PubMed ID: 36060055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hourly Power Grid Variations, Electric Vehicle Charging Patterns, and Operating Emissions.
    Miller I; Arbabzadeh M; Gençer E
    Environ Sci Technol; 2020 Dec; 54(24):16071-16085. PubMed ID: 33241682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of PHEV in active distribution network under gas station network attack.
    Li X; Dong J; Du D; Wu L; Fei M
    ISA Trans; 2020 Sep; 104():192-203. PubMed ID: 30853104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive evaluation of electric vehicle charging network under the coupling of traffic network and power grid.
    He L; He J; Zhu L; Huang W; Wang Y; Yu H
    PLoS One; 2022; 17(9):e0275231. PubMed ID: 36149930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Marginal Greenhouse Gas Emissions of Ontario's Electricity System and the Implications of Electric Vehicle Charging.
    Gai Y; Wang A; Pereira L; Hatzopoulou M; Posen ID
    Environ Sci Technol; 2019 Jul; 53(13):7903-7912. PubMed ID: 31244061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of modified plug-in electric vehicle charger controller with grid support functionalities.
    R B S; C V
    PLoS One; 2022; 17(1):e0262365. PubMed ID: 35085291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Cost-Effective Electric Vehicle Intelligent Charge Scheduling Method for Commercial Smart Parking Lots Using a Simplified Convex Relaxation Technique.
    Jawad M; Qureshi MB; Ali SM; Shabbir N; Khan MUS; Aloraini A; Nawaz R
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32867171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of solar photovoltaic carport canopy with electric vehicle charging potential.
    Fakour H; Imani M; Lo SL; Yuan MH; Chen CK; Mobasser S; Muangthai I
    Sci Rep; 2023 Feb; 13(1):2136. PubMed ID: 36746978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.
    Milanés-Montero MI; Gallardo-Lozano J; Romero-Cadaval E; González-Romera E
    Sensors (Basel); 2011; 11(10):9313-26. PubMed ID: 22163697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.