These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35287464)

  • 1. A twist in the road less traveled: The AMBER ff15ipq-m force field for protein mimetics.
    Bogetti AT; Piston HE; Leung JMG; Cabalteja CC; Yang DT; DeGrave AJ; Debiec KT; Cerutti DS; Case DA; Horne WS; Chong LT
    J Chem Phys; 2020 Aug; 153(6):064101. PubMed ID: 35287464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Further along the Road Less Traveled: AMBER ff15ipq, an Original Protein Force Field Built on a Self-Consistent Physical Model.
    Debiec KT; Cerutti DS; Baker LR; Gronenborn AM; Case DA; Chong LT
    J Chem Theory Comput; 2016 Aug; 12(8):3926-47. PubMed ID: 27399642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Validation of Fluorinated, Aromatic Amino Acid Parameters for Use with the AMBER ff15ipq Protein Force Field.
    Yang DT; Gronenborn AM; Chong LT
    J Phys Chem A; 2022 Apr; 126(14):2286-2297. PubMed ID: 35352936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Links between the charge model and bonded parameter force constants in biomolecular force fields.
    Cerutti DS; Debiec KT; Case DA; Chong LT
    J Chem Phys; 2017 Oct; 147(16):161730. PubMed ID: 29096508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.
    Aliev AE; Courtier-Murias D
    J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating amber force fields using computed NMR chemical shifts.
    Koes DR; Vries JK
    Proteins; 2017 Oct; 85(10):1944-1956. PubMed ID: 28688107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New-generation amber united-atom force field.
    Yang L; Tan CH; Hsieh MJ; Wang J; Duan Y; Cieplak P; Caldwell J; Kollman PA; Luo R
    J Phys Chem B; 2006 Jul; 110(26):13166-76. PubMed ID: 16805629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical Assessment of Current Force Fields. Short Peptide Test Case.
    Vymětal J; Vondrášek J
    J Chem Theory Comput; 2013 Jan; 9(1):441-51. PubMed ID: 26589046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force Field Effects on a β-Sheet Protein Domain Structure in Thermal Unfolding Simulations.
    Wang T; Wade RC
    J Chem Theory Comput; 2006 Jan; 2(1):140-8. PubMed ID: 26626388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved AMBER force field for α,α-dialkylated peptides: intrinsic and solvent-induced conformational preferences of model systems.
    Grubišić S; Brancato G; Barone V
    Phys Chem Chem Phys; 2013 Oct; 15(40):17395-407. PubMed ID: 24022462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residue-Specific Force Field (RSFF2) Improves the Modeling of Conformational Behavior of Peptides and Proteins.
    Li S; Elcock AH
    J Phys Chem Lett; 2015 Jun; 6(11):2127-33. PubMed ID: 26266514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved side-chain torsion potentials for the Amber ff99SB protein force field.
    Lindorff-Larsen K; Piana S; Palmo K; Maragakis P; Klepeis JL; Dror RO; Shaw DE
    Proteins; 2010 Jun; 78(8):1950-8. PubMed ID: 20408171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Secondary Structure Formation Using 10 Different Force Fields in Microsecond Molecular Dynamics Simulations.
    Cino EA; Choy WY; Karttunen M
    J Chem Theory Comput; 2012 Aug; 8(8):2725-2740. PubMed ID: 22904695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ff14ipq: A Self-Consistent Force Field for Condensed-Phase Simulations of Proteins.
    Cerutti DS; Swope WC; Rice JE; Case DA
    J Chem Theory Comput; 2014 Oct; 10(10):4515-4534. PubMed ID: 25328495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modern non-polarizable force fields diverge in modeling the enzyme-substrate complex of a canonical serine protease.
    Belyaeva J; Zlobin A; Maslova V; Golovin A
    Phys Chem Chem Phys; 2023 Feb; 25(8):6352-6361. PubMed ID: 36779321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The intrinsic conformational features of amino acids from a protein coil library and their applications in force field development.
    Jiang F; Han W; Wu YD
    Phys Chem Chem Phys; 2013 Mar; 15(10):3413-28. PubMed ID: 23385383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residue-specific α-helix propensities from molecular simulation.
    Best RB; de Sancho D; Mittal J
    Biophys J; 2012 Mar; 102(6):1462-7. PubMed ID: 22455930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational Dynamics of Two Natively Unfolded Fragment Peptides: Comparison of the AMBER and CHARMM Force Fields.
    Chen W; Shi C; MacKerell AD; Shen J
    J Phys Chem B; 2015 Jun; 119(25):7902-10. PubMed ID: 26020564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Force Field Parameters for the Simulation of Single- and Double-Stranded DNA Molecules and DNA-Protein Complexes.
    Tucker MR; Piana S; Tan D; LeVine MV; Shaw DE
    J Phys Chem B; 2022 Jun; 126(24):4442-4457. PubMed ID: 35694853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of force fields on the conformational and dynamic properties of amyloid β(1-40) dimer explored by replica exchange molecular dynamics simulations.
    Watts CR; Gregory A; Frisbie C; Lovas S
    Proteins; 2018 Mar; 86(3):279-300. PubMed ID: 29235155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.