These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 35287612)
1. CELF1 promotes matrix metalloproteinases gene expression at transcriptional level in lens epithelial cells. Xiao J; Tian X; Jin S; He Y; Song M; Zou H BMC Ophthalmol; 2022 Mar; 22(1):122. PubMed ID: 35287612 [TBL] [Abstract][Full Text] [Related]
2. CELF1 Selectively Regulates Alternative Splicing of DNA Repair Genes Associated With Cataract in Human Lens Cell Line. Xiao J; Jin S; Wang X; Huang J; Zou H Biochem Genet; 2023 Aug; 61(4):1319-1333. PubMed ID: 36585568 [TBL] [Abstract][Full Text] [Related]
3. The cataract-linked RNA-binding protein Celf1 post-transcriptionally controls the spatiotemporal expression of the key homeodomain transcription factors Pax6 and Prox1 in lens development. Aryal S; Viet J; Weatherbee BAT; Siddam AD; Hernandez FG; Gautier-Courteille C; Paillard L; Lachke SA Hum Genet; 2020 Dec; 139(12):1541-1554. PubMed ID: 32594240 [TBL] [Abstract][Full Text] [Related]
5. RNA-binding proteins and post-transcriptional regulation in lens biology and cataract: Mediating spatiotemporal expression of key factors that control the cell cycle, transcription, cytoskeleton and transparency. Lachke SA Exp Eye Res; 2022 Jan; 214():108889. PubMed ID: 34906599 [TBL] [Abstract][Full Text] [Related]
6. Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins. Wang ET; Ward AJ; Cherone JM; Giudice J; Wang TT; Treacy DJ; Lambert NJ; Freese P; Saxena T; Cooper TA; Burge CB Genome Res; 2015 Jun; 25(6):858-71. PubMed ID: 25883322 [TBL] [Abstract][Full Text] [Related]
7. CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells. Xia H; Chen D; Wu Q; Wu G; Zhou Y; Zhang Y; Zhang L Biochim Biophys Acta Gene Regul Mech; 2017 Sep; 1860(9):911-921. PubMed ID: 28733224 [TBL] [Abstract][Full Text] [Related]
8. Identification of Targets of CUG-BP, Elav-Like Family Member 1 (CELF1) Regulation in Embryonic Heart Muscle. Blech-Hermoni Y; Dasgupta T; Coram RJ; Ladd AN PLoS One; 2016; 11(2):e0149061. PubMed ID: 26866591 [TBL] [Abstract][Full Text] [Related]
9. Small molecule targeting CELF1 RNA-binding activity to control HSC activation and liver fibrosis. Tan Y; Sun X; Xu Y; Tang B; Xu S; Lu D; Ye Y; Luo X; Diao X; Li F; Wang T; Chen J; Xu Q; Wu X Nucleic Acids Res; 2022 Mar; 50(5):2440-2451. PubMed ID: 35234905 [TBL] [Abstract][Full Text] [Related]
10. CELF1 promotes vascular endothelial growth factor degradation resulting in impaired microvasculature in heart failure. Chang KT; Wang LH; Lin YM; Cheng CF; Wang GS FASEB J; 2021 May; 35(5):e21512. PubMed ID: 33811692 [TBL] [Abstract][Full Text] [Related]
11. The RNA-binding protein Celf1 post-transcriptionally regulates p27Kip1 and Dnase2b to control fiber cell nuclear degradation in lens development. Siddam AD; Gautier-Courteille C; Perez-Campos L; Anand D; Kakrana A; Dang CA; Legagneux V; Méreau A; Viet J; Gross JM; Paillard L; Lachke SA PLoS Genet; 2018 Mar; 14(3):e1007278. PubMed ID: 29565969 [TBL] [Abstract][Full Text] [Related]
12. Gene-gene functional relationships in Alzheimer's disease: CELF1 regulates KLC1 alternative splicing. Kikuchi M; Viet J; Nagata K; Sato M; David G; Audic Y; Silverman MA; Yamamoto M; Akatsu H; Hashizume Y; Takeda S; Akamine S; Miyamoto T; Uozumi R; Gotoh S; Mori K; Ikeda M; Paillard L; Morihara T Biochem Biophys Res Commun; 2024 Aug; 721():150025. PubMed ID: 38768546 [TBL] [Abstract][Full Text] [Related]
13. Neonatal cardiac dysfunction and transcriptome changes caused by the absence of Celf1. Giudice J; Xia Z; Li W; Cooper TA Sci Rep; 2016 Oct; 6():35550. PubMed ID: 27759042 [TBL] [Abstract][Full Text] [Related]
14. Long noncoding RNA TUG1 is downregulated in non-small cell lung cancer and can regulate CELF1 on binding to PRC2. Lin PC; Huang HD; Chang CC; Chang YS; Yen JC; Lee CC; Chang WH; Liu TC; Chang JG BMC Cancer; 2016 Aug; 16():583. PubMed ID: 27485439 [TBL] [Abstract][Full Text] [Related]
15. Comparative transcriptome analysis of epithelial and fiber cells in newborn mouse lenses with RNA sequencing. Hoang TV; Kumar PK; Sutharzan S; Tsonis PA; Liang C; Robinson ML Mol Vis; 2014; 20():1491-517. PubMed ID: 25489224 [TBL] [Abstract][Full Text] [Related]
16. The CELF1 RNA-Binding Protein Regulates Decay of Signal Recognition Particle mRNAs and Limits Secretion in Mouse Myoblasts. Russo J; Lee JE; López CM; Anderson J; Nguyen TP; Heck AM; Wilusz J; Wilusz CJ PLoS One; 2017; 12(1):e0170680. PubMed ID: 28129347 [TBL] [Abstract][Full Text] [Related]
17. CELF1 is a central node in post-transcriptional regulatory programmes underlying EMT. Chaudhury A; Cheema S; Fachini JM; Kongchan N; Lu G; Simon LM; Wang T; Mao S; Rosen DG; Ittmann MM; Hilsenbeck SG; Shaw CA; Neilson JR Nat Commun; 2016 Nov; 7():13362. PubMed ID: 27869122 [TBL] [Abstract][Full Text] [Related]
18. RNA-binding protein CELF1 promotes tumor growth and alters gene expression in oral squamous cell carcinoma. House RP; Talwar S; Hazard ES; Hill EG; Palanisamy V Oncotarget; 2015 Dec; 6(41):43620-34. PubMed ID: 26498364 [TBL] [Abstract][Full Text] [Related]