These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 35287862)

  • 1. Machine learning for the prediction of heavy metal removal by chitosan-based flocculants.
    Lu C; Xu Z; Dong B; Zhang Y; Wang M; Zeng Y; Zhang C
    Carbohydr Polym; 2022 Jun; 285():119240. PubMed ID: 35287862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metal removal from aqueous solutions by chitosan-based magnetic composite flocculants.
    Xiao X; Yu Y; Sun Y; Zheng X; Chen A
    J Environ Sci (China); 2021 Oct; 108():22-32. PubMed ID: 34465434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel chitosan-based flocculants for chromium and nickle removal in wastewater via integrated chelation and flocculation.
    Sun Y; Chen A; Pan SY; Sun W; Zhu C; Shah KJ; Zheng H
    J Environ Manage; 2019 Oct; 248():109241. PubMed ID: 31306928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flocculation of combined contaminants of dye and heavy metal by nano-chitosan flocculants.
    Sun Y; Li D; Lu X; Sheng J; Zheng X; Xiao X
    J Environ Manage; 2021 Dec; 299():113589. PubMed ID: 34467861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the performance of bridging-assembly chelating flocculant for heavy metals removal: Role of branched architectures.
    Chen W; Zhang F; Tang Q; Du B; Ma D; Zhao Z; Fan L; Luo H; Zhao Z; Huang X; Zheng H
    Chemosphere; 2022 Feb; 289():133260. PubMed ID: 34906524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the sorption efficiency of heavy metal based on the biochar characteristics, metal sources, and environmental conditions using various novel hybrid machine learning models.
    Ke B; Nguyen H; Bui XN; Bui HB; Choi Y; Zhou J; Moayedi H; Costache R; Nguyen-Trang T
    Chemosphere; 2021 Aug; 276():130204. PubMed ID: 34088091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new indicator of ionic polymeric flocculants for the removal of heavy metals anions: Specific charge density.
    Hou R; Zhao H; Cao H; Ning J
    Water Environ Res; 2019 Sep; 91(9):888-897. PubMed ID: 31004527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of multiple heavy metal ions using a macromolecule chelating flocculant xanthated chitosan.
    Yang K; Wang G; Liu F; Wang X; Chen X
    Water Sci Technol; 2019 Jun; 79(12):2289-2297. PubMed ID: 31411583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic flocculation of Cu(II) wastewater by chitosan-based magnetic composite flocculants with recyclable properties.
    Sun Y; Yu Y; Zheng X; Chen A; Zheng H
    Carbohydr Polym; 2021 Jun; 261():117891. PubMed ID: 33766376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a novel dextran-based flocculant on treatment of dye wastewater: Effect of kaolin particles.
    Zhao C; Zheng H; Sun Y; Zhang S; Liang J; Liu Y; An Y
    Sci Total Environ; 2018 Nov; 640-641():243-254. PubMed ID: 29859440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of Cu2+ and turbidity from wastewater by mercaptoacetyl chitosan.
    Chang Q; Zhang M; Wang J
    J Hazard Mater; 2009 Sep; 169(1-3):621-5. PubMed ID: 19414213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave assisted synthesis and characterization of a novel bio-based flocculant from dextran and chitosan.
    Zeng T; Hu XQ; Wu H; Yang JW; Zhang HB
    Int J Biol Macromol; 2019 Jun; 131():760-768. PubMed ID: 30902714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Fresh Water Actinomycete Bioflocculant and Its Biotechnological Applications in Wastewaters Treatment and Removal of Heavy Metals.
    Agunbiade MO; Pohl C; Heerden EV; Oyekola O; Ashafa A
    Int J Environ Res Public Health; 2019 Sep; 16(18):. PubMed ID: 31510036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superior performance of novel chitosan-based flocculants in decolorization of anionic dyes: Responses of flocculation performance to flocculant molecular structures and hydrophobicity and flocculation mechanism.
    Jin W; Nan J; Chen M; Song L; Wu F
    J Hazard Mater; 2023 Jun; 452():131273. PubMed ID: 36996540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and efficient removal of heavy metal and cationic dye by carboxylate-rich magnetic chitosan flocculants: Role of ionic groups.
    Liu B; Chen X; Zheng H; Wang Y; Sun Y; Zhao C; Zhang S
    Carbohydr Polym; 2018 Feb; 181():327-336. PubMed ID: 29253979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of lignosulfonate-acrylamide-chitosan ternary graft copolymer and its flocculation performance.
    He K; Lou T; Wang X; Zhao W
    Int J Biol Macromol; 2015 Nov; 81():1053-8. PubMed ID: 26432366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the starch-based flocculants on flocculation of hairwork wastewater.
    Du Q; Wei H; Li A; Yang H
    Sci Total Environ; 2017 Dec; 601-602():1628-1637. PubMed ID: 28609850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review on chitosan-based flocculants and their applications in water treatment.
    Yang R; Li H; Huang M; Yang H; Li A
    Water Res; 2016 May; 95():59-89. PubMed ID: 26986497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a novel chitosan-based flocculant with high flocculation performance, low toxicity and good floc properties.
    Yang Z; Li H; Yan H; Wu H; Yang H; Wu Q; Li H; Li A; Cheng R
    J Hazard Mater; 2014 Jul; 276():480-8. PubMed ID: 24929787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of fine structure of chitosan-based flocculants on the flocculation of bentonite and humic acid: Evaluation and modeling.
    Wang M; Feng L; You X; Zheng H
    Chemosphere; 2021 Feb; 264(Pt 2):128525. PubMed ID: 33038737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.