These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35287865)

  • 21. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications.
    Du H; Liu W; Zhang M; Si C; Zhang X; Li B
    Carbohydr Polym; 2019 Apr; 209():130-144. PubMed ID: 30732792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Green Processing of Carbon Nanomaterials.
    Kawamoto M; He P; Ito Y
    Adv Mater; 2017 Jul; 29(25):. PubMed ID: 27859655
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An insight into nanocellulose as soft condensed matter: Challenge and future prospective toward environmental sustainability.
    Tan K; Heo S; Foo M; Chew IM; Yoo C
    Sci Total Environ; 2019 Feb; 650(Pt 1):1309-1326. PubMed ID: 30308818
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent trends in nanomaterials applications in environmental monitoring and remediation.
    Das S; Sen B; Debnath N
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18333-44. PubMed ID: 26490920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Doping matters in carbon nanomaterial efficiency in environmental remediation.
    Parambath JBM; Abla F; Arooj M; Mohamed AA
    Environ Sci Pollut Res Int; 2023 Dec; 30(60):124921-124933. PubMed ID: 36609974
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emerging Nanocellulose Technologies: Recent Developments.
    Isogai A
    Adv Mater; 2021 Jul; 33(28):e2000630. PubMed ID: 32686197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lignocellulosic Biomass-Derived Nanocellulose Crystals as Fillers in Membranes for Water and Wastewater Treatment: A Review.
    Sadare OO; Yoro KO; Moothi K; Daramola MO
    Membranes (Basel); 2022 Mar; 12(3):. PubMed ID: 35323795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Review on the Role and Performance of Cellulose Nanomaterials in Sensors.
    Teodoro KBR; Sanfelice RC; Migliorini FL; Pavinatto A; Facure MHM; Correa DS
    ACS Sens; 2021 Jul; 6(7):2473-2496. PubMed ID: 34182751
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanocellulose-Based Inks for 3D Bioprinting: Key Aspects in Research Development and Challenging Perspectives in Applications-A Mini Review.
    Wang X; Wang Q; Xu C
    Bioengineering (Basel); 2020 Apr; 7(2):. PubMed ID: 32365578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advances in Biomedical Application of Nanocellulose-Based Materials: A Review.
    Yuan Q; Bian J; Ma MG
    Curr Med Chem; 2021; 28(40):8275-8295. PubMed ID: 33256574
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The versatility of nanocellulose, modification strategies, and its current progress in wastewater treatment and environmental remediation.
    Shahzad A; Ullah MW; Ali J; Aziz K; Javed MA; Shi Z; Manan S; Ul-Islam M; Nazar M; Yang G
    Sci Total Environ; 2023 Feb; 858(Pt 2):159937. PubMed ID: 36343829
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.
    Zhu H; Luo W; Ciesielski PN; Fang Z; Zhu JY; Henriksson G; Himmel ME; Hu L
    Chem Rev; 2016 Aug; 116(16):9305-74. PubMed ID: 27459699
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cellulose Nanomaterials in Interfacial Evaporators for Desalination: A "Natural" Choice.
    Cao S; Rathi P; Wu X; Ghim D; Jun YS; Singamaneni S
    Adv Mater; 2021 Jul; 33(28):e2000922. PubMed ID: 32537817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances of nanomaterials for air pollution remediation and their impacts on the environment.
    Saleem H; Zaidi SJ; Ismail AF; Goh PS
    Chemosphere; 2022 Jan; 287(Pt 2):132083. PubMed ID: 34488054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In Vitro Toxicity Evaluation of Lignin-(Un)coated Cellulose Based Nanomaterials on Human A549 and THP-1 Cells.
    Yanamala N; Kisin ER; Menas AL; Farcas MT; Khaliullin TO; Vogel UB; Shurin GV; Schwegler-Berry D; Fournier PM; Star A; Shvedova AA
    Biomacromolecules; 2016 Nov; 17(11):3464-3473. PubMed ID: 27709894
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of Carbon Nanomaterials from Biomass Utilizing Ionic Liquids for Potential Application in Solar Energy Conversion and Storage.
    Mugadza K; Stark A; Ndungu PG; Nyamori VO
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32906574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Applications of carbon nanomaterials in the plant system: A perspective view on the pros and cons.
    Verma SK; Das AK; Gantait S; Kumar V; Gurel E
    Sci Total Environ; 2019 Jun; 667():485-499. PubMed ID: 30833247
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellulose Nanocrystals/Graphene Hybrids-A Promising New Class of Materials for Advanced Applications.
    Trache D; Thakur VK; Boukherroub R
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32759691
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid growth of MXene-based membranes for sustainable environmental pollution remediation.
    Raheem I; Mubarak NM; Karri RR; Solangi NH; Jatoi AS; Mazari SA; Khalid M; Tan YH; Koduru JR; Malafaia G
    Chemosphere; 2023 Jan; 311(Pt 2):137056. PubMed ID: 36332734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellulose-Based Nanomaterials for Energy Applications.
    Wang X; Yao C; Wang F; Li Z
    Small; 2017 Nov; 13(42):. PubMed ID: 28902985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.