BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35288098)

  • 21. NAD(P)-dependent glucose dehydrogenase: Applications for biosensors, bioelectrodes, and biofuel cells.
    Stolarczyk K; Rogalski J; Bilewicz R
    Bioelectrochemistry; 2020 Oct; 135():107574. PubMed ID: 32498025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drug Screening with Genetically Encoded Fluorescent Sensors: Today and Tomorrow.
    Potekhina ES; Bass DY; Kelmanson IV; Fetisova ES; Ivanenko AV; Belousov VV; Bilan DS
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33375682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Imaging and tracing of intracellular metabolites utilizing genetically encoded fluorescent biosensors.
    Zhang C; Wei ZH; Ye BC
    Biotechnol J; 2013 Nov; 8(11):1280-91. PubMed ID: 24591186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biosensor reveals multiple sources for mitochondrial NAD⁺.
    Cambronne XA; Stewart ML; Kim D; Jones-Brunette AM; Morgan RK; Farrens DL; Cohen MS; Goodman RH
    Science; 2016 Jun; 352(6292):1474-7. PubMed ID: 27313049
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetically encoded fluorescent sensors for intracellular NADH detection.
    Zhao Y; Jin J; Hu Q; Zhou HM; Yi J; Yu Z; Xu L; Wang X; Yang Y; Loscalzo J
    Cell Metab; 2011 Oct; 14(4):555-66. PubMed ID: 21982715
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compartment-Specific Poly-ADP-Ribose Formation as a Biosensor for Subcellular NAD Pools.
    VanLinden MR; Niere M; Nikiforov AA; Ziegler M; Dölle C
    Methods Mol Biol; 2017; 1608():45-56. PubMed ID: 28695502
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent progress in design of protein-based fluorescent biosensors and their cellular applications.
    Tamura T; Hamachi I
    ACS Chem Biol; 2014 Dec; 9(12):2708-17. PubMed ID: 25317665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantification of the Metabolic Heterogeneity in Mycobacterial Cells Through the Measurement of the NADH/NAD+ Ratio Using a Genetically Encoded Sensor.
    Bhat SA; Iqbal IK; Kumar A
    Methods Mol Biol; 2018; 1745():261-275. PubMed ID: 29476473
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Live cell imaging of cytosolic NADH/NAD
    Masia R; McCarty WJ; Lahmann C; Luther J; Chung RT; Yarmush ML; Yellen G
    Am J Physiol Gastrointest Liver Physiol; 2018 Jan; 314(1):G97-G108. PubMed ID: 29025729
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks.
    Greenwald EC; Mehta S; Zhang J
    Chem Rev; 2018 Dec; 118(24):11707-11794. PubMed ID: 30550275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetically encoded fluorescent indicator for imaging NAD(+)/NADH ratio changes in different cellular compartments.
    Bilan DS; Matlashov ME; Gorokhovatsky AY; Schultz C; Enikolopov G; Belousov VV
    Biochim Biophys Acta; 2014 Mar; 1840(3):951-7. PubMed ID: 24286672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Encapsulated Optically Responsive Cell Systems: Toward Smart Implants in Biomedicine.
    Boss C; Bouche N; De Marchi U
    Adv Healthc Mater; 2018 Apr; 7(8):e1701148. PubMed ID: 29283209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shining light on signaling and metabolic networks by genetically encoded biosensors.
    Lalonde S; Ehrhardt DW; Frommer WB
    Curr Opin Plant Biol; 2005 Dec; 8(6):574-81. PubMed ID: 16188489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism.
    Tao R; Zhao Y; Chu H; Wang A; Zhu J; Chen X; Zou Y; Shi M; Liu R; Su N; Du J; Zhou HM; Zhu L; Qian X; Liu H; Loscalzo J; Yang Y
    Nat Methods; 2017 Jul; 14(7):720-728. PubMed ID: 28581494
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Genetically Encoded Fluorescent Redox Sensors].
    Bilan DS; Lukyanov SA; Belousov VV
    Bioorg Khim; 2015; 41(3):259-74. PubMed ID: 26502603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.
    Xiao W; Wang RS; Handy DE; Loscalzo J
    Antioxid Redox Signal; 2018 Jan; 28(3):251-272. PubMed ID: 28648096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD.
    Kolenc OI; Quinn KP
    Antioxid Redox Signal; 2019 Feb; 30(6):875-889. PubMed ID: 29268621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Signaling Microdomains in the Spotlight: Visualizing Compartmentalized Signaling Using Genetically Encoded Fluorescent Biosensors.
    Zhang JF; Mehta S; Zhang J
    Annu Rev Pharmacol Toxicol; 2021 Jan; 61():587-608. PubMed ID: 33411579
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Keeping the balance in NAD metabolism.
    Strømland Ø; Niere M; Nikiforov AA; VanLinden MR; Heiland I; Ziegler M
    Biochem Soc Trans; 2019 Feb; 47(1):119-130. PubMed ID: 30626706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatiotemporal Imaging of Cellular Energy Metabolism with Genetically-Encoded Fluorescent Sensors in Brain.
    Zhang Z; Chen W; Zhao Y; Yang Y
    Neurosci Bull; 2018 Oct; 34(5):875-886. PubMed ID: 29679217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.