These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 35288174)

  • 1. Possible role of pannexin 1 channels and purinergic receptors in the pathogenesis and mechanism of action of SARS-CoV-2 and therapeutic potential of targeting them in COVID-19.
    Nadeali Z; Mohammad-Rezaei F; Aria H; Nikpour P
    Life Sci; 2022 May; 297():120482. PubMed ID: 35288174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of Pannexin-1 channels, ATP, and purinergic receptors in the pathogenesis of HIV and SARS-CoV-2.
    Hernandez CA; Eugenin EA
    Curr Opin Pharmacol; 2023 Dec; 73():102404. PubMed ID: 37734241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanosensitive release of adenosine 5'-triphosphate through pannexin channels and mechanosensitive upregulation of pannexin channels in optic nerve head astrocytes: a mechanism for purinergic involvement in chronic strain.
    Beckel JM; Argall AJ; Lim JC; Xia J; Lu W; Coffey EE; Macarak EJ; Shahidullah M; Delamere NA; Zode GS; Sheffield VC; Shestopalov VI; Laties AM; Mitchell CH
    Glia; 2014 Sep; 62(9):1486-501. PubMed ID: 24839011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pannexin 1 channels and ATP release in epilepsy: two sides of the same coin : The contribution of pannexin-1, connexins, and CALHM ATP-release channels to purinergic signaling.
    Dossi E; Rouach N
    Purinergic Signal; 2021 Dec; 17(4):533-548. PubMed ID: 34495463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging concepts regarding pannexin 1 in the vasculature.
    Good ME; Begandt D; DeLalio LJ; Keller AS; Billaud M; Isakson BE
    Biochem Soc Trans; 2015 Jun; 43(3):495-501. PubMed ID: 26009197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of ATP release in pain: role of pannexin and connexin channels.
    Muñoz MF; Griffith TN; Contreras JE
    Purinergic Signal; 2021 Dec; 17(4):549-561. PubMed ID: 34792743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Systematic Review of the Role of Purinergic Signalling Pathway in the Treatment of COVID-19.
    Korb VG; Schultz IC; Beckenkamp LR; Wink MR
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purinergic signaling: decoding its role in COVID-19 pathogenesis and promising treatment strategies.
    Shafaghat Z; Ghomi AK; Khorramdelazad H; Safari E
    Inflammopharmacology; 2023 Dec; 31(6):3005-3020. PubMed ID: 37805959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of Pannexin-1 channels and extracellular ATP in the pathogenesis of the human immunodeficiency virus.
    D'Amico D; Valdebenito S; Eugenin EA
    Purinergic Signal; 2021 Dec; 17(4):563-576. PubMed ID: 34542793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemotherapeutic drugs induce ATP release via caspase-gated pannexin-1 channels and a caspase/pannexin-1-independent mechanism.
    Boyd-Tressler A; Penuela S; Laird DW; Dubyak GR
    J Biol Chem; 2014 Sep; 289(39):27246-27263. PubMed ID: 25112874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiating connexin hemichannels and pannexin channels in cellular ATP release.
    Lohman AW; Isakson BE
    FEBS Lett; 2014 Apr; 588(8):1379-88. PubMed ID: 24548565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic properties and regulation of Pannexin 1 channel.
    Chiu YH; Ravichandran KS; Bayliss DA
    Channels (Austin); 2014; 8(2):103-9. PubMed ID: 24419036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplification of human platelet activation by surface pannexin-1 channels.
    Taylor KA; Wright JR; Vial C; Evans RJ; Mahaut-Smith MP
    J Thromb Haemost; 2014 Jun; 12(6):987-98. PubMed ID: 24655807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pannexin1 channels act downstream of P2X 7 receptors in ATP-induced murine T-cell death.
    Shoji KF; Sáez PJ; Harcha PA; Aguila HL; Sáez JC
    Channels (Austin); 2014; 8(2):142-56. PubMed ID: 24590064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological mechanisms for the modulation of pannexin 1 channel activity.
    Sandilos JK; Bayliss DA
    J Physiol; 2012 Dec; 590(24):6257-66. PubMed ID: 23070703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of Pannexin1 channels with purinergic and NMDA receptor channels.
    Li S; Bjelobaba I; Stojilkovic SS
    Biochim Biophys Acta Biomembr; 2018 Jan; 1860(1):166-173. PubMed ID: 28389204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exciting and not so exciting roles of pannexins.
    Scemes E; Velíšková J
    Neurosci Lett; 2019 Mar; 695():25-31. PubMed ID: 28284836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitors of the 5-lipoxygenase pathway activate pannexin1 channels in macrophages via the thromboxane receptor.
    da Silva-Souza HA; de Lira MN; Patel NK; Spray DC; Persechini PM; Scemes E
    Am J Physiol Cell Physiol; 2014 Sep; 307(6):C571-9. PubMed ID: 25080488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential Therapeutic Role of Purinergic Receptors in Cardiovascular Disease Mediated by SARS-CoV-2.
    Dos Anjos F; Simões JLB; Assmann CE; Carvalho FB; Bagatini MD
    J Immunol Res; 2020; 2020():8632048. PubMed ID: 33299899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High extracellular ATP levels released through pannexin-1 channels mediate inflammation and insulin resistance in skeletal muscle fibres of diet-induced obese mice.
    Jorquera G; Meneses-Valdés R; Rosales-Soto G; Valladares-Ide D; Campos C; Silva-Monasterio M; Llanos P; Cruz G; Jaimovich E; Casas M
    Diabetologia; 2021 Jun; 64(6):1389-1401. PubMed ID: 33710396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.