BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35288203)

  • 21. [Spatial Variation of Heavy Metals in Soils and Its Ecological Risk Evaluation in a Typical
    Zhang HJ; Zhao KL; Ye ZQ; Xu B; Zhao WM; Gu XB; Zhang HF
    Huan Jing Ke Xue; 2018 Jun; 39(6):2893-2903. PubMed ID: 29965648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differences in absorption of cadmium and lead among fourteen sweet potato cultivars and health risk assessment.
    Huang F; Zhou H; Gu J; Liu C; Yang W; Liao B; Zhou H
    Ecotoxicol Environ Saf; 2020 Oct; 203():111012. PubMed ID: 32684522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elevated CO
    Wu D; Zha Y; Wang X; Wang Y; Li Y; Yin Y; Du W; Ai F; Guo H
    Environ Sci Pollut Res Int; 2023 Apr; 30(17):49733-49743. PubMed ID: 36781664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Heavy Metal Contamination of Soils and Crops near a Zinc Smelter].
    Chen F; Dong ZQ; Wang CC; Wei XH; Hu Y; Zhang LJ
    Huan Jing Ke Xue; 2017 Oct; 38(10):4360-4369. PubMed ID: 29965222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Concentrations and health risks of heavy metals in soils and crops around the Pingle manganese (Mn) mine area in Guangxi Province, China.
    Liu K; Fan L; Li Y; Zhou Z; Chen C; Chen B; Yu F
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30180-30190. PubMed ID: 30151790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contrasting Effects of Cattle Manure Applications and Root-Induced Changes on Heavy Metal Dynamics in the Rhizosphere of Soybean in an Acidic Haplic Fluvisol: A Chronological Pot Experiment.
    Chu Q; Sha Z; Osaki M; Watanabe T
    J Agric Food Chem; 2017 Apr; 65(15):3085-3095. PubMed ID: 28368588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb-Zn mine in Korea.
    Jung MC; Thornton I
    Sci Total Environ; 1997 May; 198(2):105-21. PubMed ID: 9167264
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Screening Capsicum chinense fruits for heavy metals bioaccumulation.
    Antonious GF; Snyder JC; Berke T; Jarret RL
    J Environ Sci Health B; 2010 Aug; 45(6):562-71. PubMed ID: 20635296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of heavy metals pollution of soybean grains in North Anhui of China.
    Zhang T; Xu W; Lin X; Yan H; Ma M; He Z
    Sci Total Environ; 2019 Jan; 646():914-922. PubMed ID: 30067961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contamination and risk assessment of heavy metals in soils irrigated with biogas slurry: a case study of Taihu basin.
    Bian B; Wu Hs; Zhou Lj
    Environ Monit Assess; 2015 Apr; 187(4):155. PubMed ID: 25732981
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China.
    Zhuang P; McBride MB; Xia H; Li N; Li Z
    Sci Total Environ; 2009 Feb; 407(5):1551-61. PubMed ID: 19068266
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fungal inoculation and elevated CO2 mediate growth of Lolium mutiforum and Phytolacca americana, metal uptake, and metal bioavailability in metal-contaminated soil: evidence from DGT measurement.
    Song N; Wang F; Zhang C; Tang S; Guo J; Ju X; Smith DL
    Int J Phytoremediation; 2013; 15(3):268-82. PubMed ID: 23488012
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heavy metal distribution in some French forest soils: evidence for atmospheric contamination.
    Hernandez L; Probst A; Probst JL; Ulrich E
    Sci Total Environ; 2003 Aug; 312(1-3):195-219. PubMed ID: 12873411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Soil properties and cultivars determine heavy metal accumulation in rice grain and cultivars respond differently to Cd stress.
    Li D; Wang L; Wang Y; Li H; Chen G
    Environ Sci Pollut Res Int; 2019 May; 26(14):14638-14648. PubMed ID: 30877541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cadmium and lead differentially affect growth, physiology, and metal accumulation in guar (Cyamopsis tetragonoloba L.) genotypes.
    Sanaei S; Sadeghinia M; Meftahizade H; Ardakani AF; Ghorbanpour M
    Environ Sci Pollut Res Int; 2022 Jan; 29(3):4180-4192. PubMed ID: 34402017
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heavy metals translocation and accumulation from the rhizosphere soils to the edible parts of the medicinal plant Fengdan (Paeonia ostii) grown on a metal mining area, China.
    Shen ZJ; Xu C; Chen YS; Zhang Z
    Ecotoxicol Environ Saf; 2017 Sep; 143():19-27. PubMed ID: 28494313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils.
    Lamb DT; Ming H; Megharaj M; Naidu R
    J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zinc fertilisation increases grain zinc and reduces grain lead and cadmium concentrations more in zinc-biofortified than standard wheat cultivar.
    Qaswar M; Hussain S; Rengel Z
    Sci Total Environ; 2017 Dec; 605-606():454-460. PubMed ID: 28672234
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cadmium, copper, lead and zinc accumulation in wild plant species near a lead smelter.
    Xing W; Liu H; Banet T; Wang H; Ippolito JA; Li L
    Ecotoxicol Environ Saf; 2020 Jul; 198():110683. PubMed ID: 32361499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Climate change driven plant-metal-microbe interactions.
    Rajkumar M; Prasad MN; Swaminathan S; Freitas H
    Environ Int; 2013 Mar; 53():74-86. PubMed ID: 23347948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.