These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35288315)

  • 1. Mechanosensitive osteogenesis on native cellulose scaffolds for bone tissue engineering.
    Leblanc Latour M; Pelling AE
    J Biomech; 2022 Apr; 135():111030. PubMed ID: 35288315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decellularized Apple-Derived Scaffolds for Bone Tissue Engineering In Vitro and In Vivo.
    Leblanc Latour M; Tarar M; Hickey RJ; Cuerrier CM; Catelas I; Pelling AE
    J Vis Exp; 2024 Feb; (204):. PubMed ID: 38465930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the cytocompatibility and differentiation of bone progenitors on electrospun zein scaffolds.
    Cardenas Turner J; Collins G; Blaber EA; Almeida EAC; Arinzeh TL
    J Tissue Eng Regen Med; 2020 Jan; 14(1):173-185. PubMed ID: 31670902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering.
    Wu C; Zhou Y; Lin C; Chang J; Xiao Y
    Acta Biomater; 2012 Oct; 8(10):3805-15. PubMed ID: 22750735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced osteogenesis on proantocyanidin-loaded date palm endocarp cellulosic matrices: A novel sustainable approach for guided bone regeneration.
    Galefi A; Nourany M; Hosseini S; Alipour A; Azari S; Jahanfar M; Farrokhi N; Homaeigohar S; Shahsavarani H
    Int J Biol Macromol; 2023 Jul; 242(Pt 2):124857. PubMed ID: 37187421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Key role of the expression of bone morphogenetic proteins in increasing the osteogenic activity of osteoblast-like cells exposed to shock waves and seeded on bioactive glass-ceramic scaffolds for bone tissue engineering.
    Muzio G; Martinasso G; Baino F; Frairia R; Vitale-Brovarone C; Canuto RA
    J Biomater Appl; 2014 Nov; 29(5):728-36. PubMed ID: 24994880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering.
    Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y
    Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promotion of osteogenic differentiation by non-thermal biocompatible plasma treated chitosan scaffold.
    Li Y; Kim JH; Choi EH; Han I
    Sci Rep; 2019 Mar; 9(1):3712. PubMed ID: 30842578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2].
    Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteoblast studied on gelatin based biomaterials in rabbit Bone Bioengineering.
    Yadav N; Srivastava P
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109892. PubMed ID: 31499962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells.
    Kazimierczak P; Benko A; Nocun M; Przekora A
    Int J Nanomedicine; 2019; 14():6615-6630. PubMed ID: 31695360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proliferation and differential regulation of osteoblasts cultured on surface-phosphorylated cellulose nanofiber scaffolds.
    Liu Q; Li Q; Hatakeyama M; Kitaoka T
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126842. PubMed ID: 37703974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro mineralization of human mesenchymal stem cells on three-dimensional type I collagen versus PLGA scaffolds: a comparative analysis.
    Kruger EA; Im DD; Bischoff DS; Pereira CT; Huang W; Rudkin GH; Yamaguchi DT; Miller TA
    Plast Reconstr Surg; 2011 Jun; 127(6):2301-2311. PubMed ID: 21617464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalization of porous BCP scaffold by generating cell-derived extracellular matrix from rat bone marrow stem cells culture for bone tissue engineering.
    Kim B; Ventura R; Lee BT
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1256-e1267. PubMed ID: 28752541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the feasibility of utilizing the small molecule phenamil as a novel biofactor for bone regenerative engineering.
    Lo KW; Ulery BD; Kan HM; Ashe KM; Laurencin CT
    J Tissue Eng Regen Med; 2014 Sep; 8(9):728-36. PubMed ID: 22815259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication.
    Lee DH; Tripathy N; Shin JH; Song JE; Cha JG; Min KD; Park CH; Khang G
    Int J Biol Macromol; 2017 Feb; 95():14-23. PubMed ID: 27818295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering.
    Chen G; Dong C; Yang L; Lv Y
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.