BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35289165)

  • 1. Engineered Probiotic
    Wu J; Tian X; Xu X; Gu X; Kong J; Guo T
    ACS Synth Biol; 2022 Apr; 11(4):1568-1576. PubMed ID: 35289165
    [No Abstract]   [Full Text] [Related]  

  • 2. Fine tuning of the lactate and diacetyl production through promoter engineering in Lactococcus lactis.
    Guo T; Kong J; Zhang L; Zhang C; Hu S
    PLoS One; 2012; 7(4):e36296. PubMed ID: 22558426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of lycopene biosynthesis genes fused in line with Shine-Dalgarno sequences improves the stress-tolerance of Lactococcus lactis.
    Dong X; Wang Y; Yang F; Zhao S; Tian B; Li T
    Biotechnol Lett; 2017 Jan; 39(1):65-70. PubMed ID: 27677495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introducing glutathione biosynthetic capability into Lactococcus lactis subsp. cremoris NZ9000 improves the oxidative-stress resistance of the host.
    Fu RY; Bongers RS; van Swam II; Chen J; Molenaar D; Kleerebezem M; Hugenholtz J; Li Y
    Metab Eng; 2006 Nov; 8(6):662-71. PubMed ID: 16962352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Wide Comparison Reveals a Probiotic Strain Lactococcus Lactis WFLU12 Isolated from the Gastrointestinal Tract of Olive Flounder (Paralichthys Olivaceus) Harboring Genes Supporting Probiotic Action.
    Nguyen TL; Kim DH
    Mar Drugs; 2018 Apr; 16(5):. PubMed ID: 29695124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced heterologous protein productivity by genome reduction in Lactococcus lactis NZ9000.
    Zhu D; Fu Y; Liu F; Xu H; Saris PE; Qiao M
    Microb Cell Fact; 2017 Jan; 16(1):1. PubMed ID: 28049473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase.
    Lopez de Felipe F; Kleerebezem M; de Vos WM; Hugenholtz J
    J Bacteriol; 1998 Aug; 180(15):3804-8. PubMed ID: 9683475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Host lysozyme-mediated lysis of Lactococcus lactis facilitates delivery of colitis-attenuating superoxide dismutase to inflamed colons.
    Ballal SA; Veiga P; Fenn K; Michaud M; Kim JH; Gallini CA; Glickman JN; Quéré G; Garault P; Béal C; Derrien M; Courtin P; Kulakauskas S; Chapot-Chartier MP; van Hylckama Vlieg J; Garrett WS
    Proc Natl Acad Sci U S A; 2015 Jun; 112(25):7803-8. PubMed ID: 26056274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered and wild-type L. lactis promote anti-inflammatory cytokine signalling in inflammatory bowel disease patient's mucosa.
    Simčič S; Berlec A; Stopinšek S; Štrukelj B; Orel R
    World J Microbiol Biotechnol; 2019 Feb; 35(3):45. PubMed ID: 30810891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Lactococcus lactis: influence of the overproduction of alpha-acetolactate synthase in strains deficient in lactate dehydrogenase as a function of culture conditions.
    Platteeuw C; Hugenholtz J; Starrenburg M; van Alen-Boerrigter I; de Vos WM
    Appl Environ Microbiol; 1995 Nov; 61(11):3967-71. PubMed ID: 8526510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protective Effects of Selenium Nanoparticle-Enriched Lactococcus lactis NZ9000 against Enterotoxigenic Escherichia coli K88-Induced Intestinal Barrier Damage in Mice.
    Chen Y; Qiao L; Song X; Ma L; Dou X; Xu C
    Appl Environ Microbiol; 2021 Nov; 87(23):e0163621. PubMed ID: 34524898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Lactococcus lactis for high level accumulation of glutathione and S-adenosyl-L-methionine.
    Xu C; Shi Z; Shao J; Yu C; Xu Z
    World J Microbiol Biotechnol; 2019 Nov; 35(12):185. PubMed ID: 31728760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and evaluation of an efficient heterologous gene knock-in reporter system in Lactococcus lactis.
    Lu Y; Yan H; Deng J; Huang Z; Jin X; Yu Y; Hu Q; Hu F; Wang J
    Microb Cell Fact; 2017 Sep; 16(1):154. PubMed ID: 28923077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription analysis of hyaluronan biosynthesis genes in Streptococcus zooepidemicus and metabolically engineered Lactococcus lactis.
    Prasad SB; Ramachandran KB; Jayaraman G
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1593-607. PubMed ID: 22367612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Glutathione plays an anti-oxidant role in Lactococcus lactis].
    Fu RY; Chen J; Li Y
    Wei Sheng Wu Xue Bao; 2006 Jun; 46(3):379-84. PubMed ID: 16933605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis of Lactobacillus paracasei SMN-LBK under ethanol stress.
    Guo J; Li X; Li B; Yang J; Jin D; Li K
    J Dairy Sci; 2020 Sep; 103(9):7813-7825. PubMed ID: 32564954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Lactococcus lactis for D-Lactic Acid Production from Starch.
    Aso Y; Hashimoto A; Ohara H
    Curr Microbiol; 2019 Oct; 76(10):1186-1192. PubMed ID: 31302724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Lactococcus lactis as a multi-stress tolerant biosynthetic chassis by deleting the prophage-related fragment.
    Qiao W; Qiao Y; Liu F; Zhang Y; Li R; Wu Z; Xu H; Saris PEJ; Qiao M
    Microb Cell Fact; 2020 Dec; 19(1):225. PubMed ID: 33298073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High yields of 2,3-butanediol and mannitol in Lactococcus lactis through engineering of NAD⁺ cofactor recycling.
    Gaspar P; Neves AR; Gasson MJ; Shearman CA; Santos H
    Appl Environ Microbiol; 2011 Oct; 77(19):6826-35. PubMed ID: 21841021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiamine-Starved
    Zhao S; Solem C
    J Agric Food Chem; 2024 Mar; 72(9):4858-4868. PubMed ID: 38377583
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.