These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35289174)

  • 1. Study on
    Jiang Z; Zhang H; Han Z; Zhai X; Qin C; Wen M; Lai G; Ho CT; Zhang L; Wan X
    J Agric Food Chem; 2022 Mar; 70(12):3832-3841. PubMed ID: 35289174
    [No Abstract]   [Full Text] [Related]  

  • 2. Formation Mechanism of Di-
    Jiang Z; Zhou F; Huo H; Han Z; Qin C; Ho CT; Zhang L; Wan X
    J Agric Food Chem; 2023 Feb; 71(6):2975-2989. PubMed ID: 36734013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolomics Investigation Reveals That 8-C N-Ethyl-2-pyrrolidinone-Substituted Flavan-3-ols Are Potential Marker Compounds of Stored White Teas.
    Dai W; Tan J; Lu M; Zhu Y; Li P; Peng Q; Guo L; Zhang Y; Xie D; Hu Z; Lin Z
    J Agric Food Chem; 2018 Jul; 66(27):7209-7218. PubMed ID: 29921123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations of the highly efficient processing technique, chemical constituents, and anti-inflammatory effect of N-ethyl-2-pyrrolidinone-substituted flavan-3-ol (EPSF)-enriched white tea.
    Gao J; Chen D; Xie D; Peng J; Hu Z; Lin Z; Dai W
    Food Chem; 2024 Aug; 450():139328. PubMed ID: 38626712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nontargeted metabolomics predicts the storage duration of white teas with 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols as marker compounds.
    Xie D; Dai W; Lu M; Tan J; Zhang Y; Chen M; Lin Z
    Food Res Int; 2019 Nov; 125():108635. PubMed ID: 31554114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C-8 N-Ethyl-2-pyrrolidinone-Substituted Flavan-3-ols from the Leaves of Camellia sinensis var. pubilimba.
    Meng XH; Zhu HT; Yan H; Wang D; Yang CR; Zhang YJ
    J Agric Food Chem; 2018 Jul; 66(27):7150-7155. PubMed ID: 29889511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LC-MS-Based Metabolomics Reveals the Chemical Changes of Polyphenols during High-Temperature Roasting of Large-Leaf Yellow Tea.
    Zhou J; Wu Y; Long P; Ho CT; Wang Y; Kan Z; Cao L; Zhang L; Wan X
    J Agric Food Chem; 2019 May; 67(19):5405-5412. PubMed ID: 30485095
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Dai W; Lou N; Xie D; Hu Z; Song H; Lu M; Shang D; Wu W; Peng J; Yin P; Lin Z
    J Agric Food Chem; 2020 Oct; 68(43):12164-12172. PubMed ID: 33074673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of
    Dai W; Ramos-Jerz M; Xie D; Peng J; Winterhalter P; Jerz G; Lin Z
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885862
    [No Abstract]   [Full Text] [Related]  

  • 10. 8-C N-ethyl-2-pyrrolidinone substituted flavan-3-ols as the marker compounds of Chinese dark teas formed in the post-fermentation process provide significant antioxidative activity.
    Wang W; Zhang L; Wang S; Shi S; Jiang Y; Li N; Tu P
    Food Chem; 2014; 152():539-45. PubMed ID: 24444972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Flavoalkaloids from White Tea with Inhibitory Activity against the Formation of Advanced Glycation End Products.
    Li X; Liu GJ; Zhang W; Zhou YL; Ling TJ; Wan XC; Bao GH
    J Agric Food Chem; 2018 May; 66(18):4621-4629. PubMed ID: 29669412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nontargeted Analysis Using Ultraperformance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry Uncovers the Effects of Harvest Season on the Metabolites and Taste Quality of Tea (Camellia sinensis L.).
    Dai W; Qi D; Yang T; Lv H; Guo L; Zhang Y; Zhu Y; Peng Q; Xie D; Tan J; Lin Z
    J Agric Food Chem; 2015 Nov; 63(44):9869-78. PubMed ID: 26494158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory and chemical characteristics of
    Cao QQ; Fu YQ; Wang JQ; Zhang L; Wang F; Yin JF; Xu YQ
    Food Chem X; 2021 Dec; 12():100178. PubMed ID: 34927052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolite analysis and sensory evaluation reveal the effect of roasting on the characteristic flavor of large-leaf yellow tea.
    Li Y; Zhang J; Jia H; Pan Y; Xu YQ; Wang Y; Deng WW
    Food Chem; 2023 Nov; 427():136711. PubMed ID: 37390734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Flavoalkaloids with Potent α-Glucosidase and Acetylcholinesterase Inhibitory Activities from Yunnan Black Tea 'Jin-Ya'.
    Li N; Zhu HT; Wang D; Zhang M; Yang CR; Zhang YJ
    J Agric Food Chem; 2020 Jul; 68(30):7955-7963. PubMed ID: 32628847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea.
    Yang C; Hu Z; Lu M; Li P; Tan J; Chen M; Lv H; Zhu Y; Zhang Y; Guo L; Peng Q; Dai W; Lin Z
    Food Res Int; 2018 Apr; 106():909-919. PubMed ID: 29580004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolomic profiling delineate taste qualities of tea leaf pubescence.
    Zhu M; Li N; Zhao M; Yu W; Wu JL
    Food Res Int; 2017 Apr; 94():36-44. PubMed ID: 28290365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New phenylpropanoid-substituted flavan-3-ols from Pu-er ripe tea.
    Tao MK; Xu M; Zhu HT; Cheng RR; Wang D; Yang CR; Zhang YJ
    Nat Prod Commun; 2014 Aug; 9(8):1167-70. PubMed ID: 25233599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolomics and electronic-tongue analysis reveal differences in color and taste quality of large-leaf yellow tea under different roasting methods.
    Sheng C; Lu M; Zhang J; Zhao W; Jiang Y; Li T; Wang Y; Ning J
    Food Chem X; 2024 Oct; 23():101721. PubMed ID: 39229616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced oxidation of flavan-3-ols and proanthocyanidin accumulation in water-stressed tea plants.
    Hernández I; Alegre L; Munné-Bosch S
    Phytochemistry; 2006 Jun; 67(11):1120-6. PubMed ID: 16712885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.