These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 35289229)
1. Effect of Low-Intensity Pulsed Ultrasound on the Graft-Bone Healing of Artificial Ligaments: An In Vitro and In Vivo Study. Liu X; Sun K; Xu P; Yu Z; Lei Z; Zhou H; Li J; Li X; Zhu Z; Wang H; Chen C; Bai X Am J Sports Med; 2022 Mar; 50(3):801-813. PubMed ID: 35289229 [TBL] [Abstract][Full Text] [Related]
2. Effect of Low-Intensity Pulsed Ultrasound After Autologous Adipose-Derived Stromal Cell Transplantation for Bone-Tendon Healing in a Rabbit Model. Chen C; Zhang T; Liu F; Qu J; Chen Y; Fan S; Chen H; Sun L; Zhao C; Hu J; Lu H Am J Sports Med; 2019 Mar; 47(4):942-953. PubMed ID: 30870031 [TBL] [Abstract][Full Text] [Related]
3. Initiation Timing of Low-Intensity Pulsed Ultrasound Stimulation for Tendon-Bone Healing in a Rabbit Model. Lu H; Chen C; Qu J; Chen H; Chen Y; Zheng C; Wang Z; Xu D; Zhou J; Zhang T; Qin L; Hu J Am J Sports Med; 2016 Oct; 44(10):2706-2715. PubMed ID: 27358283 [TBL] [Abstract][Full Text] [Related]
4. Encapsulation of a nanoporous simvastatin-chitosan composite to enhance osteointegration of hydroxyapatite-coated polyethylene terephthalate ligaments. Ding X; Wang S; Jin W; Liu X; Chen J; Chen S Int J Nanomedicine; 2019; 14():4881-4893. PubMed ID: 31308664 [TBL] [Abstract][Full Text] [Related]
5. Biomineralizaion of hydroxyapatite on polyethylene terephthalate artificial ligaments promotes graft-bone healing after anterior cruciate ligament reconstruction: An in vitro and in vivo study. Cai J; Ai C; Chen J; Chen S J Biomater Appl; 2020 Aug; 35(2):193-204. PubMed ID: 32338167 [TBL] [Abstract][Full Text] [Related]
6. Polydopamine Coating-Mediated Immobilization of BMP-2 on Polyethylene Terephthalate-Based Artificial Ligaments for Enhanced Bioactivity. Kang Z; Li D; Shu C; Du J; Yu B; Qian Z; Zhong Z; Zhang X; Yu B; Huang Q; Huang J; Zhu Y; Yi C; Ding H Front Bioeng Biotechnol; 2021; 9():749221. PubMed ID: 34869260 [No Abstract] [Full Text] [Related]
7. Local delivery of controlled-release simvastatin to improve the biocompatibility of polyethylene terephthalate artificial ligaments for reconstruction of the anterior cruciate ligament. Zhang P; Han F; Li Y; Chen J; Chen T; Zhi Y; Jiang J; Lin C; Chen S; Zhao P Int J Nanomedicine; 2016; 11():465-78. PubMed ID: 26869789 [TBL] [Abstract][Full Text] [Related]
8. Low-Intensity Pulsed Ultrasound Stimulates Osteogenic Differentiation of Periosteal Cells Maung WM; Nakata H; Miura M; Miyasaka M; Kim YK; Kasugai S; Kuroda S Tissue Eng Part A; 2021 Jan; 27(1-2):63-73. PubMed ID: 32164486 [TBL] [Abstract][Full Text] [Related]
9. The effect of low-intensity pulsed ultrasound on bone-tendon junction healing: Initiating after inflammation stage. Lu H; Liu F; Chen H; Chen C; Qu J; Xu D; Zhang T; Zhou J; Hu J J Orthop Res; 2016 Oct; 34(10):1697-1706. PubMed ID: 26833973 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of osseointegration of polyethylene terephthalate artificial ligament by coating of silk fibroin and depositing of hydroxyapatite. Jiang J; Wan F; Yang J; Hao W; Wang Y; Yao J; Shao Z; Zhang P; Chen J; Zhou L; Chen S Int J Nanomedicine; 2014; 9():4569-80. PubMed ID: 25302023 [TBL] [Abstract][Full Text] [Related]
11. Enhanced bone formation of calvarial bone defects by low-intensity pulsed ultrasound and recombinant human bone morphogenetic protein-9: a preliminary experimental study in rats. Imafuji T; Shirakata Y; Shinohara Y; Nakamura T; Noguchi K Clin Oral Investig; 2021 Oct; 25(10):5917-5927. PubMed ID: 33755786 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of myostatin signal pathway may be involved in low-intensity pulsed ultrasound promoting bone healing. Sun L; Sun S; Zhao X; Zhang J; Guo J; Tang L; Ta D J Med Ultrason (2001); 2019 Oct; 46(4):377-388. PubMed ID: 31377938 [TBL] [Abstract][Full Text] [Related]
13. Profiled polyethylene terephthalate filaments that incorporate collagen and calcium phosphate enhance ligamentisation and bone formation. Tai CC; Huang CC; Chou BH; Chen CY; Chen SY; Huang YH; Sun JS; Chao YH Eur Cell Mater; 2022 Jun; 43():252-266. PubMed ID: 35652679 [TBL] [Abstract][Full Text] [Related]
14. Low-intensity pulsed ultrasound enhances bone repair in a rabbit model of steroid-associated osteonecrosis. Zhu H; Cai X; Lin T; Shi Z; Yan S Clin Orthop Relat Res; 2015 May; 473(5):1830-9. PubMed ID: 25736917 [TBL] [Abstract][Full Text] [Related]
15. LIPUS inhibited the expression of inflammatory factors and promoted the osteogenic differentiation capacity of hPDLCs by inhibiting the NF-κB signaling pathway. Liu S; Zhou M; Li J; Hu B; Jiang D; Huang H; Song J J Periodontal Res; 2020 Jan; 55(1):125-140. PubMed ID: 31541455 [TBL] [Abstract][Full Text] [Related]
16. Low-intensity pulsed ultrasound promotes alveolar bone regeneration in a periodontal injury model. Wang Y; Qiu Y; Li J; Zhao C; Song J Ultrasonics; 2018 Nov; 90():166-172. PubMed ID: 30049446 [TBL] [Abstract][Full Text] [Related]
17. Combined application of low-intensity pulsed ultrasound and functional electrical stimulation accelerates bone-tendon junction healing in a rabbit model. Hu J; Qu J; Xu D; Zhang T; Qin L; Lu H J Orthop Res; 2014 Feb; 32(2):204-9. PubMed ID: 24136665 [TBL] [Abstract][Full Text] [Related]
18. A Comparison of 1- and 3.2-MHz Low-Intensity Pulsed Ultrasound on Osteogenesis on Porous Titanium Alloy Scaffolds: An In Vitro and In Vivo Study. Feng L; Liu X; Cao H; Qin L; Hou W; Wu L J Ultrasound Med; 2019 Jan; 38(1):191-202. PubMed ID: 29781183 [TBL] [Abstract][Full Text] [Related]
19. Low-Intensity Pulsed Ultrasound Promotes Osteogenic Differentiation of Reamer-Irrigator-Aspirator Graft-Derived Cells in Vitro. Sawauchi K; Fukui T; Oe K; Kumabe Y; Oda T; Yoshikawa R; Takase K; Matsushita T; Matsumoto T; Hayashi S; Kuroda R; Niikura T Ultrasound Med Biol; 2022 Feb; 48(2):313-322. PubMed ID: 34785092 [TBL] [Abstract][Full Text] [Related]
20. Effects of graphene modification on the bioactivation of polyethylene-terephthalate-based artificial ligaments. Wang CH; Guo ZS; Pang F; Zhang LY; Yan M; Yan JH; Li KW; Li XJ; Li Y; Bi L; Han YS ACS Appl Mater Interfaces; 2015 Jul; 7(28):15263-76. PubMed ID: 26111253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]