These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 35289291)
21. Lessons in Membrane Engineering for Octanoic Acid Production from Environmental Escherichia coli Isolates. Chen Y; Reinhardt M; Neris N; Kerns L; Mansell TJ; Jarboe LR Appl Environ Microbiol; 2018 Oct; 84(19):. PubMed ID: 30030228 [TBL] [Abstract][Full Text] [Related]
22. Multiplex Design of the Metabolic Network for Production of l-Homoserine in Escherichia coli. Liu P; Zhang B; Yao ZH; Liu ZQ; Zheng YG Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32801175 [TBL] [Abstract][Full Text] [Related]
23. Systems Analyses Reveal the Resilience of Escherichia coli Physiology during Accumulation and Export of the Nonnative Organic Acid Citramalate. Webb J; Springthorpe V; Rossoni L; Minde DP; Langer S; Walker H; Alstrom-Moore A; Larson T; Lilley K; Eastham G; Stephens G; Thomas GH; Kelly DJ; Green J mSystems; 2019 Jun; 4(4):. PubMed ID: 31186337 [TBL] [Abstract][Full Text] [Related]
24. [Construction and optimization of microbial cell factories for producing cis, cis-muconic acid]. Song G; Jiang X; Chen W; Peng Y; Lu F; Wang Q Sheng Wu Gong Cheng Xue Bao; 2016 Sep; 32(9):1212-1223. PubMed ID: 29022322 [TBL] [Abstract][Full Text] [Related]
25. Cell-free styrene biosynthesis at high titers. Grubbe WS; Rasor BJ; Krüger A; Jewett MC; Karim AS Metab Eng; 2020 Sep; 61():89-95. PubMed ID: 32502620 [TBL] [Abstract][Full Text] [Related]
26. Metabolic engineering of Escherichia coli for the production of hydroxy fatty acids from glucose. Cao Y; Cheng T; Zhao G; Niu W; Guo J; Xian M; Liu H BMC Biotechnol; 2016 Mar; 16():26. PubMed ID: 26956722 [TBL] [Abstract][Full Text] [Related]
27. Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli. Zou X; Guo L; Huang L; Li M; Zhang S; Yang A; Zhang Y; Zhu L; Zhang H; Zhang J; Feng Z Appl Microbiol Biotechnol; 2020 Mar; 104(6):2545-2559. PubMed ID: 31989219 [TBL] [Abstract][Full Text] [Related]
28. Re-engineering Escherichia coli KJ122 to enhance the utilization of xylose and xylose/glucose mixture for efficient succinate production in mineral salt medium. Khunnonkwao P; Jantama SS; Kanchanatawee S; Jantama K Appl Microbiol Biotechnol; 2018 Jan; 102(1):127-141. PubMed ID: 29079860 [TBL] [Abstract][Full Text] [Related]
29. Bioproduction of Benzylamine from Renewable Feedstocks via a Nine-Step Artificial Enzyme Cascade and Engineered Metabolic Pathways. Zhou Y; Wu S; Mao J; Li Z ChemSusChem; 2018 Jul; 11(13):2221-2228. PubMed ID: 29766662 [TBL] [Abstract][Full Text] [Related]
30. Improving phloroglucinol tolerance and production in Escherichia coli by GroESL overexpression. Zhang R; Cao Y; Liu W; Xian M; Liu H Microb Cell Fact; 2017 Dec; 16(1):227. PubMed ID: 29258595 [TBL] [Abstract][Full Text] [Related]
31. Metabolic engineering of Escherichia coli for the production of phenylpyruvate derivatives. Liu SP; Zhang L; Mao J; Ding ZY; Shi GY Metab Eng; 2015 Nov; 32():55-65. PubMed ID: 26386181 [TBL] [Abstract][Full Text] [Related]
32. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A. Zhou L; Ding Q; Jiang GZ; Liu ZN; Wang HY; Zhao GR Microb Cell Fact; 2017 May; 16(1):84. PubMed ID: 28511681 [TBL] [Abstract][Full Text] [Related]
33. Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain. Huang Q; Lin Y; Yan Y Biotechnol Bioeng; 2013 Dec; 110(12):3188-96. PubMed ID: 23801069 [TBL] [Abstract][Full Text] [Related]
34. Chromosome Engineering To Generate Plasmid-Free Phenylalanine- and Tyrosine-Overproducing Koma D; Kishida T; Yoshida E; Ohashi H; Yamanaka H; Moriyoshi K; Nagamori E; Ohmoto T Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32414798 [TBL] [Abstract][Full Text] [Related]
35. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables. Tan Z; Yoon JM; Nielsen DR; Shanks JV; Jarboe LR Metab Eng; 2016 May; 35():105-113. PubMed ID: 26875445 [TBL] [Abstract][Full Text] [Related]
36. Metabolic engineering of Escherichia coli for production of 2-Phenylethylacetate from L-phenylalanine. Guo D; Zhang L; Pan H; Li X Microbiologyopen; 2017 Aug; 6(4):. PubMed ID: 28436122 [TBL] [Abstract][Full Text] [Related]
37. Genetic engineering of Escherichia coli to improve L-phenylalanine production. Liu Y; Xu Y; Ding D; Wen J; Zhu B; Zhang D BMC Biotechnol; 2018 Jan; 18(1):5. PubMed ID: 29382315 [TBL] [Abstract][Full Text] [Related]
38. One-pot synthesis of (R)- and (S)-phenylglycinol from bio-based L-phenylalanine by an artificial biocatalytic cascade. Zhang J; Qi N; Gao L; Li J; Zhang C; Chang H Bioresour Bioprocess; 2021 Oct; 8(1):97. PubMed ID: 38650191 [TBL] [Abstract][Full Text] [Related]
39. Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine. Li J; Tian C; Xia Y; Mutanda I; Wang K; Wang Y Metab Eng; 2019 Mar; 52():124-133. PubMed ID: 30496827 [TBL] [Abstract][Full Text] [Related]
40. Production of Substituted Styrene Bioproducts from Lignin and Lignocellulose Using Engineered Pseudomonas putida KT2440. Williamson JJ; Bahrin N; Hardiman EM; Bugg TDH Biotechnol J; 2020 Jul; 15(7):e1900571. PubMed ID: 32488970 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]