These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 35289330)

  • 41. Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers.
    Yu Y; Yu Y; Huang L; Peng H; Xiong L; Cao L
    Nano Lett; 2017 Jun; 17(6):3613-3618. PubMed ID: 28505462
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly Enhanced Many-Body Interactions in Anisotropic 2D Semiconductors.
    Sharma A; Yan H; Zhang L; Sun X; Liu B; Lu Y
    Acc Chem Res; 2018 May; 51(5):1164-1173. PubMed ID: 29671579
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interlayer excitons in bilayer MoS
    Niehues I; Blob A; Stiehm T; Michaelis de Vasconcellos S; Bratschitsch R
    Nanoscale; 2019 Jul; 11(27):12788-12792. PubMed ID: 31245801
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In-Plane Electric-Field-Induced Orbital Hybridization of Excitonic States in Monolayer WSe_{2}.
    Zhu B; Xiao K; Yang S; Watanabe K; Taniguchi T; Cui X
    Phys Rev Lett; 2023 Jul; 131(3):036901. PubMed ID: 37540882
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrically Switchable Intervalley Excitons with Strong Two-Phonon Scattering in Bilayer WSe
    Altaiary MM; Liu E; Liang CT; Hsiao FC; van Baren J; Taniguchi T; Watanabe K; Gabor NM; Chang YC; Lui CH
    Nano Lett; 2022 Mar; 22(5):1829-1835. PubMed ID: 35201774
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Charge-Accumulation Effect in Transition Metal Dichalcogenide Heterobilayers.
    Ye T; Li J; Li D
    Small; 2019 Oct; 15(42):e1902424. PubMed ID: 31448529
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantum control of exciton wave functions in 2D semiconductors.
    Hu J; Lorchat E; Chen X; Watanabe K; Taniguchi T; Heinz TF; Murthy PA; Chervy T
    Sci Adv; 2024 Mar; 10(12):eadk6369. PubMed ID: 38507493
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tunable phononic coupling in excitonic quantum emitters.
    Ripin A; Peng R; Zhang X; Chakravarthi S; He M; Xu X; Fu KM; Cao T; Li M
    Nat Nanotechnol; 2023 Sep; 18(9):1020-1026. PubMed ID: 37264087
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment, and valley spin.
    Hsu WT; Lin BH; Lu LS; Lee MH; Chu MW; Li LJ; Yao W; Chang WH; Shih CK
    Sci Adv; 2019 Dec; 5(12):eaax7407. PubMed ID: 32064316
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intrinsic and Extrinsic Defect-Related Excitons in TMDCs.
    Greben K; Arora S; Harats MG; Bolotin KI
    Nano Lett; 2020 Apr; 20(4):2544-2550. PubMed ID: 32191482
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultralong-Range Energy Transport in a Disordered Organic Semiconductor at Room Temperature Via Coherent Exciton-Polariton Propagation.
    Hou S; Khatoniar M; Ding K; Qu Y; Napolov A; Menon VM; Forrest SR
    Adv Mater; 2020 Jul; 32(28):e2002127. PubMed ID: 32484288
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Twist-angle-dependent interlayer exciton diffusion in WS
    Yuan L; Zheng B; Kunstmann J; Brumme T; Kuc AB; Ma C; Deng S; Blach D; Pan A; Huang L
    Nat Mater; 2020 Jun; 19(6):617-623. PubMed ID: 32393806
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dynamic Exciton Polaron in Two-Dimensional Lead Halide Perovskites and Implications for Optoelectronic Applications.
    Tao W; Zhang Y; Zhu H
    Acc Chem Res; 2022 Feb; 55(3):345-353. PubMed ID: 35043614
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamic Exciton Funneling by Local Strain Control in a Monolayer Semiconductor.
    Moon H; Grosso G; Chakraborty C; Peng C; Taniguchi T; Watanabe K; Englund D
    Nano Lett; 2020 Sep; 20(9):6791-6797. PubMed ID: 32790415
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrical tuning of optically active interlayer excitons in bilayer MoS
    Peimyoo N; Deilmann T; Withers F; Escolar J; Nutting D; Taniguchi T; Watanabe K; Taghizadeh A; Craciun MF; Thygesen KS; Russo S
    Nat Nanotechnol; 2021 Aug; 16(8):888-893. PubMed ID: 34083771
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interlayer Excitons with Large Optical Amplitudes in Layered van der Waals Materials.
    Deilmann T; Thygesen KS
    Nano Lett; 2018 May; 18(5):2984-2989. PubMed ID: 29665688
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrically controllable router of interlayer excitons.
    Liu Y; Dini K; Tan Q; Liew T; Novoselov KS; Gao W
    Sci Adv; 2020 Oct; 6(41):. PubMed ID: 33028515
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reconfigurable exciton-plasmon interconversion for nanophotonic circuits.
    Lee HS; Luong DH; Kim MS; Jin Y; Kim H; Yun S; Lee YH
    Nat Commun; 2016 Nov; 7():13663. PubMed ID: 27892463
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrical control of hybrid exciton transport in a van der Waals heterostructure.
    Tagarelli F; Lopriore E; Erkensten D; Perea-Causín R; Brem S; Hagel J; Sun Z; Pasquale G; Watanabe K; Taniguchi T; Malic E; Kis A
    Nat Photonics; 2023; 17(7):615-621. PubMed ID: 37426431
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Engineering the Strain and Interlayer Excitons of 2D Materials via Lithographically Engraved Hexagonal Boron Nitride.
    Hsieh YC; Lin ZY; Fung SJ; Lu WS; Ho SC; Hong SP; Ho SZ; Huang CH; Watanabe K; Taniguchi T; Chan YH; Chen YC; Wu CL; Chen TM
    Nano Lett; 2023 Aug; 23(15):7244-7251. PubMed ID: 37348137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.