These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 35289738)
1. Effects of glycerol and glucose on docosahexaenoic acid synthesis in Zhang H; Zhao X; Zhao C; Zhang J; Liu Y; Yao M; Liu J Prep Biochem Biotechnol; 2023; 53(1):81-92. PubMed ID: 35289738 [TBL] [Abstract][Full Text] [Related]
2. A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Li J; Liu R; Chang G; Li X; Chang M; Liu Y; Jin Q; Wang X Bioresour Technol; 2015 Feb; 177():51-7. PubMed ID: 25479393 [TBL] [Abstract][Full Text] [Related]
3. Biotechnological Production of Docosahexaenoic Acid Using Aurantiochytrium limacinum: Carbon Sources Comparison And Growth Characterization. Abad S; Turon X Mar Drugs; 2015 Dec; 13(12):7275-84. PubMed ID: 26690180 [TBL] [Abstract][Full Text] [Related]
4. A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22:6 proportions in total fatty acid. Huang TY; Lu WC; Chu IM Bioresour Technol; 2012 Nov; 123():8-14. PubMed ID: 22929740 [TBL] [Abstract][Full Text] [Related]
5. Whole genome analysis and elucidation of docosahexaenoic acid (DHA) biosynthetic pathway in Aurantiochytrium sp. SW1. Prabhakaran P; Raethong N; Nazir Y; Halim H; Yang W; Vongsangnak W; Abdul Hamid A; Song Y Gene; 2022 Dec; 846():146850. PubMed ID: 36044942 [TBL] [Abstract][Full Text] [Related]
6. Different impacts of short-chain fatty acids on saturated and polyunsaturated fatty acid biosynthesis in Aurantiochytrium sp. SD116. Song X; Tan Y; Liu Y; Zhang J; Liu G; Feng Y; Cui Q J Agric Food Chem; 2013 Oct; 61(41):9876-81. PubMed ID: 24053543 [TBL] [Abstract][Full Text] [Related]
7. Comparative Transcriptomic Analysis on the Effect of Sesamol on the Two-Stages Fermentation of Yang X; Wei L; Liang S; Wang Z; Li S Mar Drugs; 2024 Aug; 22(8):. PubMed ID: 39195487 [No Abstract] [Full Text] [Related]
8. A new strategy for strain improvement of Aurantiochytrium sp. based on heavy-ions mutagenesis and synergistic effects of cold stress and inhibitors of enoyl-ACP reductase. Cheng YR; Sun ZJ; Cui GZ; Song X; Cui Q Enzyme Microb Technol; 2016 Nov; 93-94():182-190. PubMed ID: 27702480 [TBL] [Abstract][Full Text] [Related]
9. Antigastric Cancer Bioactive Aurantiochytrium Oil Rich in Docosahexaenoic Acid: From Media Optimization to Cancer Cells Cytotoxicity Assessment. Shakeri S; Amoozyan N; Fekrat F; Maleki M J Food Sci; 2017 Nov; 82(11):2706-2718. PubMed ID: 29095488 [TBL] [Abstract][Full Text] [Related]
10. Bioconversion of waste acid oil to docosahexaenoic acid by integration of "ex novo'' and "de novo'' fermentation in Aurantiochytrium limacinum. Laddha H; Pawar PR; Prakash G Bioresour Technol; 2021 Jul; 332():125062. PubMed ID: 33839510 [TBL] [Abstract][Full Text] [Related]
11. Cloning of the pks3 gene of Aurantiochytrium limacinum and functional study of the 3-ketoacyl-ACP reductase and dehydratase enzyme domains. Liu Z; Zang X; Cao X; Wang Z; Liu C; Sun D; Guo Y; Zhang F; Yang Q; Hou P; Pang C PLoS One; 2018; 13(12):e0208853. PubMed ID: 30533058 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome analysis of Aurantiochytrium limacinum under low salt conditions. Kubo Y; Morimoto D; Kato S; Shiroi M; Ohara K; Higashine T; Mori Y; Yoshimi T; Takeuchi M; Sawayama S J Appl Microbiol; 2023 Jan; 134(1):. PubMed ID: 36626746 [TBL] [Abstract][Full Text] [Related]
13. Fed-batch fermentation of mixed carbon source significantly enhances the production of docosahexaenoic acid in Thraustochytriidae sp. PKU#Mn16 by differentially regulating fatty acids biosynthetic pathways. Ye H; He Y; Xie Y; Sen B; Wang G Bioresour Technol; 2020 Feb; 297():122402. PubMed ID: 31761627 [TBL] [Abstract][Full Text] [Related]
14. Low dissolved oxygen supply functions as a global regulator of the growth and metabolism of Aurantiochytrium sp. PKU#Mn16 in the early stages of docosahexaenoic acid fermentation. Liu L; Zhu X; Ye H; Wen Y; Sen B; Wang G Microb Cell Fact; 2023 Mar; 22(1):52. PubMed ID: 36918882 [TBL] [Abstract][Full Text] [Related]
15. Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Ethier S; Woisard K; Vaughan D; Wen Z Bioresour Technol; 2011 Jan; 102(1):88-93. PubMed ID: 20570140 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome and gene expression analysis of DHA producer Aurantiochytrium under low temperature conditions. Ma Z; Tan Y; Cui G; Feng Y; Cui Q; Song X Sci Rep; 2015 Sep; 5():14446. PubMed ID: 26403200 [TBL] [Abstract][Full Text] [Related]
17. Transcriptomic Profiling and Gene Disruption Revealed that Two Genes Related to PUFAs/DHA Biosynthesis May be Essential for Cell Growth of Aurantiochytrium sp. Liang Y; Liu Y; Tang J; Ma J; Cheng JJ; Daroch M Mar Drugs; 2018 Sep; 16(9):. PubMed ID: 30200435 [No Abstract] [Full Text] [Related]
18. Reconstruction and analysis of the genome-scale metabolic model of schizochytrium limacinum SR21 for docosahexaenoic acid production. Ye C; Qiao W; Yu X; Ji X; Huang H; Collier JL; Liu L BMC Genomics; 2015 Oct; 16():799. PubMed ID: 26475325 [TBL] [Abstract][Full Text] [Related]
19. Kinetic and Stoichiometric Modeling-Based Analysis of Docosahexaenoic Acid (DHA) Production Potential by Berzins K; Muiznieks R; Baumanis MR; Strazdina I; Shvirksts K; Prikule S; Galvanauskas V; Pleissner D; Pentjuss A; Grube M; Kalnenieks U; Stalidzans E Mar Drugs; 2022 Feb; 20(2):. PubMed ID: 35200644 [TBL] [Abstract][Full Text] [Related]
20. Use of raw glycerol to produce oil rich in polyunsaturated fatty acids by a thraustochytrid. Scott SD; Armenta RE; Berryman KT; Norman AW Enzyme Microb Technol; 2011 Mar; 48(3):267-72. PubMed ID: 22112910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]