BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 35289902)

  • 21. RING-type ubiquitin ligase McCPN1 catalyzes UBC8-dependent protein ubiquitination and interacts with Argonaute 4 in halophyte ice plant.
    Li CH; Chiang CP; Yang JY; Ma CJ; Chen YC; Yen HE
    Plant Physiol Biochem; 2014 Jul; 80():211-9. PubMed ID: 24811676
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interplay between membrane proteins and membrane protein-lipid pertaining to plant salinity stress.
    Dutta D
    Cell Biochem Funct; 2023 Jun; 41(4):399-412. PubMed ID: 37158622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell type-specific responses to salinity - the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum.
    Oh DH; Barkla BJ; Vera-Estrella R; Pantoja O; Lee SY; Bohnert HJ; Dassanayake M
    New Phytol; 2015 Aug; 207(3):627-44. PubMed ID: 25944243
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proteomic analysis of Mesembryanthemum crystallinum leaf microsomal fractions finds an imbalance in V-ATPase stoichiometry during the salt-induced transition from C3 to CAM.
    Cosentino C; Di Silvestre D; Fischer-Schliebs E; Homann U; De Palma A; Comunian C; Mauri PL; Thiel G
    Biochem J; 2013 Mar; 450(2):407-15. PubMed ID: 23252380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ectopic expression of Mesembryanthemum crystallinum sodium transporter McHKT2 provides salt stress tolerance in Arabidopsis thaliana.
    Nishijima T; Furuhashi M; Sakaoka S; Morikami A; Tsukagoshi H
    Biosci Biotechnol Biochem; 2017 Nov; 81(11):2139-2144. PubMed ID: 29017432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suppressor of K+ transport growth defect 1 (SKD1) interacts with RING-type ubiquitin ligase and sucrose non-fermenting 1-related protein kinase (SnRK1) in the halophyte ice plant.
    Chiang CP; Li CH; Jou Y; Chen YC; Lin YC; Yang FY; Huang NC; Yen HE
    J Exp Bot; 2013 May; 64(8):2385-400. PubMed ID: 23580756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative 2D-DIGE analysis of salinity responsive microsomal proteins from leaves of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea.
    Vera-Estrella R; Barkla BJ; Pantoja O
    J Proteomics; 2014 Dec; 111():113-27. PubMed ID: 24892798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimum growth and quality of the edible ice plant under saline conditions.
    Rodríguez-Hernández MDC; Garmendia I
    J Sci Food Agric; 2022 May; 102(7):2686-2692. PubMed ID: 34693528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potassium retention in leaf mesophyll as an element of salinity tissue tolerance in halophytes.
    Percey WJ; Shabala L; Wu Q; Su N; Breadmore MC; Guijt RM; Bose J; Shabala S
    Plant Physiol Biochem; 2016 Dec; 109():346-354. PubMed ID: 27810674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Myo-inositol transport and metabolism participate in salt tolerance of halophyte ice plant seedlings.
    Li CH; Tien HJ; Wen MF; Yen HE
    Physiol Plant; 2021 Jul; 172(3):1619-1629. PubMed ID: 33511710
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Salt stress in Mesembryanthemum crystallinum L. cell suspensions activates adaptive mechanisms similar to those observed in the whole plant.
    Vera-Estrella R; Barkla BJ; Bohnert HJ; Pantoja O
    Planta; 1999 Jan; 207(3):426-35. PubMed ID: 9951736
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Na+/H+ antiporters are differentially regulated in response to NaCl stress in leaves and roots of Mesembryanthemum crystallinum.
    Cosentino C; Fischer-Schliebs E; Bertl A; Thiel G; Homann U
    New Phytol; 2010 May; 186(3):669-80. PubMed ID: 20298477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The response of a model C
    Nosek M; Kaczmarczyk A; Śliwa M; Jędrzejczyk R; Kornaś A; Supel P; Kaszycki P; Miszalski Z
    J Plant Physiol; 2019 Sep; 240():153005. PubMed ID: 31271976
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intrinsic stability of Brassicaceae plasma membrane in relation to changes in proteins and lipids as a response to salinity.
    Chalbi N; Martínez-Ballesta MC; Youssef NB; Carvajal M
    J Plant Physiol; 2015 Mar; 175():148-56. PubMed ID: 25544590
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteomics reveals new salt responsive proteins associated with rice plasma membrane.
    Nohzadeh Malakshah S; Habibi Rezaei M; Heidari M; Salekdeh GH
    Biosci Biotechnol Biochem; 2007 Sep; 71(9):2144-54. PubMed ID: 17827676
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Salt regulation of transcript levels for the c subunit of a leaf vacuolar H(+)-ATPase in the halophyte Mesembryanthemum crystallinum.
    Tsiantis MS; Bartholomew DM; Smith JA
    Plant J; 1996 May; 9(5):729-36. PubMed ID: 8653119
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcript profiling of salinity stress responses by large-scale expressed sequence tag analysis in Mesembryanthemum crystallinum.
    Kore-eda S; Cushman MA; Akselrod I; Bufford D; Fredrickson M; Clark E; Cushman JC
    Gene; 2004 Oct; 341():83-92. PubMed ID: 15474291
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms and functions of membrane lipid remodeling in plants.
    Yu L; Zhou C; Fan J; Shanklin J; Xu C
    Plant J; 2021 Jul; 107(1):37-53. PubMed ID: 33853198
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nutritional and Functional Evaluation of
    Lima AR; Gama F; Castañeda-Loaiza V; Costa C; Schüler LM; Santos T; Salazar M; Nunes C; Cruz RMS; Varela J; Barreira L
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361696
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Choline-Mediated Lipid Reprogramming as a Dominant Salt Tolerance Mechanism in Grass Species Lacking Glycine Betaine.
    Zhang K; Lyu W; Gao Y; Zhang X; Sun Y; Huang B
    Plant Cell Physiol; 2021 Feb; 61(12):2018-2030. PubMed ID: 32931553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.