BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35289986)

  • 1. Tri-Layered and Gel-Like Nanofibrous Scaffolds with Anisotropic Features for Engineering Heart Valve Leaflets.
    Wu S; Li Y; Zhang C; Tao L; Kuss M; Lim JY; Butcher J; Duan B
    Adv Healthc Mater; 2022 May; 11(10):e2200053. PubMed ID: 35289986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tri-layered elastomeric scaffolds for engineering heart valve leaflets.
    Masoumi N; Annabi N; Assmann A; Larson BL; Hjortnaes J; Alemdar N; Kharaziha M; Manning KB; Mayer JE; Khademhosseini A
    Biomaterials; 2014 Sep; 35(27):7774-85. PubMed ID: 24947233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.
    Wu S; Duan B; Qin X; Butcher JT
    Acta Biomater; 2017 Mar; 51():89-100. PubMed ID: 28110071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core-shell PLGA/collagen nanofibers loaded with recombinant FN/CDHs as bone tissue engineering scaffolds.
    Wang J; Cui X; Zhou Y; Xiang Q
    Connect Tissue Res; 2014 Aug; 55(4):292-8. PubMed ID: 24844413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of polycaprolactone fibrous scaffold for heart valve tissue engineering.
    Jana S; Bhagia A; Lerman A
    Biomed Mater; 2019 Oct; 14(6):065014. PubMed ID: 31593551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melt-electrowriting-enabled anisotropic scaffolds loaded with valve interstitial cells for heart valve tissue Engineering.
    Xu C; Yang K; Xu Y; Meng X; Zhou Y; Xu Y; Li X; Qiao W; Shi J; Zhang D; Wang J; Xu W; Yang H; Luo Z; Dong N
    J Nanobiotechnology; 2024 Jun; 22(1):378. PubMed ID: 38943185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun PGS:PCL microfibers align human valvular interstitial cells and provide tunable scaffold anisotropy.
    Masoumi N; Larson BL; Annabi N; Kharaziha M; Zamanian B; Shapero KS; Cubberley AT; Camci-Unal G; Manning KB; Mayer JE; Khademhosseini A
    Adv Healthc Mater; 2014 Jun; 3(6):929-39. PubMed ID: 24453182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropicity and flexibility in trilayered microfibrous substrates promote heart valve leaflet tissue engineering.
    Snyder Y; Jana S
    Biomed Mater; 2022 Oct; 17(6):. PubMed ID: 36150373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofabrication of poly(l-lactide-co-ε-caprolactone)/silk fibroin scaffold for the application as superb anti-calcification tissue engineered prosthetic valve.
    Wang X; Liu J; Jing H; Li B; Sun Z; Li B; Kong D; Leng X; Wang Z
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111872. PubMed ID: 33579497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofunctionalized Nanofibrous Bilayer Scaffolds for Enhancing Cell Adhesion, Proliferation and Osteogenesis.
    Li H; Zheng L; Wang M
    ACS Appl Bio Mater; 2021 Jun; 4(6):5276-5294. PubMed ID: 35007009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastomeric Trilayer Substrates with Native-like Mechanical Properties for Heart Valve Leaflet Tissue Engineering.
    Snyder Y; Jana S
    ACS Biomater Sci Eng; 2023 Mar; 9(3):1570-1584. PubMed ID: 36802499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Aligned Nanofiber Polymer Yarn Networks for Anisotropic Soft Tissue Scaffolds.
    Wu S; Duan B; Liu P; Zhang C; Qin X; Butcher JT
    ACS Appl Mater Interfaces; 2016 Jul; 8(26):16950-60. PubMed ID: 27304080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D-bioprinting of aortic valve interstitial cells: impact of hydrogel and printing parameters on cell viability.
    Immohr MB; Dos Santos Adrego F; Teichert HL; Schmidt V; Sugimura Y; Bauer S; Barth M; Lichtenberg A; Akhyari P
    Biomed Mater; 2022 Nov; 18(1):. PubMed ID: 36322974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modifying decellularized aortic valve scaffolds with stromal cell-derived factor-1α loaded proteolytically degradable hydrogel for recellularization and remodeling.
    Dai J; Qiao W; Shi J; Liu C; Hu X; Dong N
    Acta Biomater; 2019 Apr; 88():280-292. PubMed ID: 30721783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun PLGA-silk fibroin-collagen nanofibrous scaffolds for nerve tissue engineering.
    Wang G; Hu X; Lin W; Dong C; Wu H
    In Vitro Cell Dev Biol Anim; 2011 Mar; 47(3):234-40. PubMed ID: 21181450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering.
    Zhang X; Xu B; Puperi DS; Yonezawa AL; Wu Y; Tseng H; Cuchiara ML; West JL; Grande-Allen KJ
    Acta Biomater; 2015 Mar; 14():11-21. PubMed ID: 25433168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic polymeric transcatheter heart valve leaflets with low calcification and good regenerative ability.
    Wang X; Jiang H; Zhang W; Kong Y; Kong D; Liu J; Wang Z
    J Mater Chem B; 2023 Jun; 11(25):5805-5816. PubMed ID: 37272853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavior of valvular interstitial cells on trilayered nanofibrous substrate mimicking morphologies of heart valve leaflet.
    Jana S; Lerman A
    Acta Biomater; 2019 Feb; 85():142-156. PubMed ID: 30528607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration.
    Alamein MA; Stephens S; Liu Q; Skabo S; Warnke PH
    Tissue Eng Part C Methods; 2013 Jun; 19(6):458-72. PubMed ID: 23102268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of stem cell differentiation to osteogenic lineage on hydroxyapatite-coated hybrid PLGA/gelatin nanofiber scaffolds.
    Sanaei-Rad P; Jafarzadeh Kashi TS; Seyedjafari E; Soleimani M
    Biologicals; 2016 Nov; 44(6):511-516. PubMed ID: 27720267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.