These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35290037)

  • 1. Self-replicating Biophotoelectrochemistry System for Sustainable CO Methanation.
    Wang C; Yu J; Ren G; Hu A; Liu X; Chen Y; Ye J; Zhou S; He Z
    Environ Sci Technol; 2022 Apr; 56(7):4587-4596. PubMed ID: 35290037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri in an electric syntrophic coculture.
    Huang L; Liu X; Zhang Z; Ye J; Rensing C; Zhou S; Nealson KH
    ISME J; 2022 Feb; 16(2):370-377. PubMed ID: 34341507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Photoelectron Capture by Ni Decoration in Methanosarcina barkeri-CdS Biohybrids for Enhanced Photocatalytic CO
    Ye J; Ren G; Kang L; Zhang Y; Liu X; Zhou S; He Z
    iScience; 2020 Jul; 23(7):101287. PubMed ID: 32623335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing microbes to pioneer environmental biophotoelectrochemistry.
    Huang S; Ye J; Gao J; Chen M; Zhou S
    Trends Biotechnol; 2024 Aug; ():. PubMed ID: 39095256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass-spectrometric studies of the interrelations among hydrogenase, carbon monoxide dehydrogenase, and methane-forming activities in pure and mixed cultures of Desulfovibrio vulgaris, Desulfovibrio desulfuricans, and Methanosarcina barkeri.
    Rajagopal BS; Lespinat PA; Fauque G; LeGall J; Berlier YM
    Appl Environ Microbiol; 1989 Sep; 55(9):2123-9. PubMed ID: 2508553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overview performance of lanthanide oxide catalysts in methanation reaction for natural gas production.
    Rosid SJM; Toemen S; Iqbal MMA; Bakar WAWA; Mokhtar WNAW; Aziz MMA
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36124-36140. PubMed ID: 31748998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustained Biotic-Abiotic Hybrids Methanogenesis Enabled Using Metal-Free Black Phosphorus/Carbon Nitride.
    Hu A; Fu T; Ren G; Zhuang M; Yuan W; Zhong S; Zhou S
    Front Microbiol; 2022; 13():957066. PubMed ID: 35903479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing Co-N
    Xia R; Cheng J; Chen Z; Zhang Z; Zhou X; Zhou J; Zhang M
    Adv Mater; 2023 Dec; 35(52):e2304920. PubMed ID: 37689983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophotoelectrochemistry for renewable energy and environmental applications.
    Ye J; Hu A; Ren G; Chen M; Zhou S; He Z
    iScience; 2021 Aug; 24(8):102828. PubMed ID: 34368649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MOF-Templated Preparation of Highly Dispersed Co/Al
    Chen X; Li Q; Zhang M; Li J; Cai S; Chen J; Jia H
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39304-39317. PubMed ID: 32805882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Ni-based quaternary disk-shaped catalysts for low-temperature CO
    Moon DH; Lee SM; Ahn JY; Nguyen DD; Kim SS; Chang SW
    J Environ Manage; 2018 Jul; 218():88-94. PubMed ID: 29674161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Solar-Driven CO
    Wang H; Li Q; Chen J; Chen J; Jia H
    Adv Sci (Weinh); 2023 Dec; 10(34):e2304406. PubMed ID: 37867240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rh/Al Nanoantenna Photothermal Catalyst for Wide-Spectrum Solar-Driven CO
    Fu G; Jiang M; Liu J; Zhang K; Hu Y; Xiong Y; Tao A; Tie Z; Jin Z
    Nano Lett; 2021 Oct; 21(20):8824-8830. PubMed ID: 34617756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of carbon monoxide oxidation to CO2 and H2 with the phosphorylation of ADP in acetate-grown Methanosarcina barkeri.
    Bott M; Eikmanns B; Thauer RK
    Eur J Biochem; 1986 Sep; 159(2):393-8. PubMed ID: 3093229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system.
    Burkhardt M; Koschack T; Busch G
    Bioresour Technol; 2015 Feb; 178():330-333. PubMed ID: 25193088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-NC@Co-NP hierarchical nanoforest steering charge exchange efficiency at biotic-abiotic interface for microbial electrochemical carbon reduction.
    Xia R; Cheng J; Chen Z; Zhang Z; Zhou X; Zhou J
    Sci Total Environ; 2023 Dec; 904():166793. PubMed ID: 37666340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The sodium cycle in methanogenesis. CO2 reduction to the formaldehyde level in methanogenic bacteria is driven by a primary electrochemical potential of Na+ generated by formaldehyde reduction to CH4.
    Kaesler B; Schönheit P
    Eur J Biochem; 1989 Dec; 186(1-2):309-16. PubMed ID: 2557210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium ions and an energized membrane required by Methanosarcina barkeri for the oxidation of methanol to the level of formaldehyde.
    Blaut M; Müller V; Fiebig K; Gottschalk G
    J Bacteriol; 1985 Oct; 164(1):95-101. PubMed ID: 3930472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO2 reduction to the level of formylmethanofuran in Methanosarcina barkeri is non-energy driven when CO is the electron donor.
    Stojanowic A; Hedderich R
    FEMS Microbiol Lett; 2004 Jun; 235(1):163-7. PubMed ID: 15158277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics.
    Lessner DJ; Li L; Li Q; Rejtar T; Andreev VP; Reichlen M; Hill K; Moran JJ; Karger BL; Ferry JG
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17921-6. PubMed ID: 17101988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.