These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35290037)

  • 21. Metal-Free Semiconductor-Based Bio-Nano Hybrids for Sustainable CO
    Hu A; Ye J; Ren G; Qi Y; Chen Y; Zhou S
    Angew Chem Int Ed Engl; 2022 Aug; 61(35):e202206508. PubMed ID: 35713977
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic, Biochemical, and Molecular Characterization of Methanosarcina barkeri Mutants Lacking Three Distinct Classes of Hydrogenase.
    Mand TD; Kulkarni G; Metcalf WW
    J Bacteriol; 2018 Oct; 200(20):. PubMed ID: 30012731
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoporous materials as new engineered catalysts for the synthesis of green fuels.
    Fechete I; Vedrine JC
    Molecules; 2015 Mar; 20(4):5638-66. PubMed ID: 25838169
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved Performance of Ru/γ-Al2O3 Catalysts in the Selective Methanation of CO in CO2-Rich Reformate Gases upon Transient Exposure to Water-Containing Reaction Gas.
    Abdel-Mageed AM; Widmann D; Eckle S; Behm RJ
    ChemSusChem; 2015 Nov; 8(22):3869-81. PubMed ID: 26457475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic analysis of mch mutants in two Methanosarcina species demonstrates multiple roles for the methanopterin-dependent C-1 oxidation/reduction pathway and differences in H(2) metabolism between closely related species.
    Guss AM; Mukhopadhyay B; Zhang JK; Metcalf WW
    Mol Microbiol; 2005 Mar; 55(6):1671-80. PubMed ID: 15752192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative evaluation of ruminal methane and carbon dioxide formation from formate through C-13 stable isotope analysis in a batch culture system.
    He ZX; Qiao JY; Yan QX; Tan ZL; Wang M
    Animal; 2019 Jan; 13(1):90-97. PubMed ID: 29644945
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalysis effect on CO
    Amica G; Azcona SR; Aparicio S; Gennari FC
    Phys Chem Chem Phys; 2020 Jul; 22(26):14720-14730. PubMed ID: 32578617
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influences of Calcination Atmosphere on Nickel Catalyst Supported on Mesoporous Graphitic Carbon Nitride Thin Sheets for CO Methanation.
    Ahmad KN; Anuar SA; Wan Isahak WNR; Rosli MI; Yarmo MA
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7102-7113. PubMed ID: 31968163
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reactors for Catalytic Methanation in the Conversion of Biomass to Synthetic Natural Gas (SNG).
    Schildhauer TJ; Biollaz SM
    Chimia (Aarau); 2015; 69(10):603-7. PubMed ID: 26598404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Specific inhibitors for identifying pathways for methane production from carbon monoxide by a nonadapted anaerobic mixed culture.
    Navarro SS; Cimpoia R; Bruant G; Guiot SR
    Can J Microbiol; 2014 Jun; 60(6):407-15. PubMed ID: 24896194
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photodriven Catalytic Hydrogenation of CO
    Xiong Y; Chen H; Hu Y; Yang S; Xue X; He L; Liu X; Ma J; Jin Z
    Nano Lett; 2021 Oct; 21(20):8693-8700. PubMed ID: 34608804
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Efficient Metal-Organic Framework-Derived Nickel Catalyst for the Light Driven Methanation of CO
    Khan IS; Mateo D; Shterk G; Shoinkhorova T; Poloneeva D; Garzón-Tovar L; Gascon J
    Angew Chem Int Ed Engl; 2021 Dec; 60(51):26476-26482. PubMed ID: 34648675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complete degradation of carbohydrate to carbon dioxide and methane by syntrophic cultures of Acetobacterium woodii and Methanosarcina barkeri.
    Winter J; Wolfe RS
    Arch Microbiol; 1979 Apr; 121(1):97-102. PubMed ID: 464732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile use of coal combustion fly ash (CCFA) as Ni-Re bimetallic catalyst support for high-performance CO
    Dong X; Jin B; Cao S; Meng F; Chen T; Ding Q; Tong C
    Waste Manag; 2020 Apr; 107():244-251. PubMed ID: 32320937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High Yield of CO and Synchronous S Recovery from the Conversion of CO
    Zhang B; Bai J; Zhang Y; Zhou C; Wang P; Zha L; Li J; Simchi A; Zhou B
    Environ Sci Technol; 2021 Nov; 55(21):14854-14862. PubMed ID: 34634907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated Co-Electrolysis and Syngas Methanation for the Direct Production of Synthetic Natural Gas from CO
    Mebrahtu C; Nohl M; Dittrich L; Foit SR; de Haart LGJB; Eichel RA; Palkovits R
    ChemSusChem; 2021 Jun; 14(11):2295-2302. PubMed ID: 33901333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metatranscriptomic evidence for classical and RuBisCO-mediated CO
    Yang P; Tan GA; Aslam M; Kim J; Lee PH
    Sci Rep; 2019 Mar; 9(1):4116. PubMed ID: 30858464
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemistry of methanogenesis.
    Ferry JG
    Crit Rev Biochem Mol Biol; 1992; 27(6):473-503. PubMed ID: 1473352
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growth of Methanosarcina barkeri (Fusaro) under nonmethanogenic conditions by the fermentation of pyruvate to acetate: ATP synthesis via the mechanism of substrate level phosphorylation.
    Bock AK; Schönheit P
    J Bacteriol; 1995 Apr; 177(8):2002-7. PubMed ID: 7721692
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.