BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35290053)

  • 1. Plant Growth-Promoting Activity of
    Wang X; Zeng X; Luo L; Chen X; Yan H; Xie Z; Zhou Y
    J Agric Food Chem; 2022 Mar; 70(12):3757-3764. PubMed ID: 35290053
    [No Abstract]   [Full Text] [Related]  

  • 2.
    Wang X; Zeng X; Qin C; Yan X; Chen X; Zhang L; Zhou Y
    J Agric Food Chem; 2023 Apr; 71(13):5283-5292. PubMed ID: 36946772
    [No Abstract]   [Full Text] [Related]  

  • 3. Isolation, Diversity, and Growth-Promoting Activities of Endophytic Bacteria From Tea Cultivars of Zijuan and Yunkang-10.
    Yan X; Wang Z; Mei Y; Wang L; Wang X; Xu Q; Peng S; Zhou Y; Wei C
    Front Microbiol; 2018; 9():1848. PubMed ID: 30186243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Culturable endophytic bacteria of Camellia species endowed with plant growth promoting characteristics.
    Borah A; Das R; Mazumdar R; Thakur D
    J Appl Microbiol; 2019 Sep; 127(3):825-844. PubMed ID: 31216598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolites and Transcriptional Profiling Analysis Reveal the Molecular Mechanisms of the Anthocyanin Metabolism in the "Zijuan" Tea Plant (Camellia sinensis var. assamica).
    Mei Y; Xie H; Liu S; Zhu J; Zhao S; Wei C
    J Agric Food Chem; 2021 Jan; 69(1):414-427. PubMed ID: 33284608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation, Diversity, and Antimicrobial and Immunomodulatory Activities of Endophytic Actinobacteria From Tea Cultivars Zijuan and Yunkang-10 (
    Wei W; Zhou Y; Chen F; Yan X; Lai Y; Wei C; Chen X; Xu J; Wang X
    Front Microbiol; 2018; 9():1304. PubMed ID: 29967601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological Changes and Differential Gene Expression of Tea Plants (
    Wang Y; Li Y; Wang J; Xiang Z; Xi P; Zhao D
    DNA Cell Biol; 2021 Jul; 40(7):906-920. PubMed ID: 34129383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytochemicals, Anti-Inflammatory, Antiproliferative, and Methylglyoxal Trapping Properties of Zijuan Tea.
    Gao X; Ho CT; Li X; Lin X; Zhang Y; Chen Z; Li B
    J Food Sci; 2018 Feb; 83(2):517-524. PubMed ID: 29337349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Microbiological properties of two endophytic bacteria isolated from tea (Camellia sinensis L.)].
    Wang T; Yang S; Chen Y; Hu L; Tu Q; Zhang L; Liu X; Wang X
    Wei Sheng Wu Xue Bao; 2014 Apr; 54(4):424-32. PubMed ID: 25007655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative chloroplast genomes: insights into the evolution of the chloroplast genome of Camellia sinensis and the phylogeny of Camellia.
    Li L; Hu Y; He M; Zhang B; Wu W; Cai P; Huo D; Hong Y
    BMC Genomics; 2021 Feb; 22(1):138. PubMed ID: 33637038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolomic and transcriptomic analyses reveal a MYB gene,
    Huang F; Duan J; Lei Y; Kang Y; Luo Y; Chen Y; Ding D; Li S
    Front Plant Sci; 2022; 13():1008588. PubMed ID: 36212379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of CAPS markers based on three key genes of the phenylpropanoid pathway in tea, Camellia sinensis (L.) O. Kuntze, and differentiation between assamica and sinensis varieties.
    Kaundun SS; Matsumoto S
    Theor Appl Genet; 2003 Feb; 106(3):375-83. PubMed ID: 12589537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two Pairs of Isomerically New Phenylpropanoidated Epicatechin Gallates with Neuroprotective Effects on H
    Ke JP; Dai WT; Zheng WJ; Wu HY; Hua F; Hu FL; Chu GX; Bao GH
    J Agric Food Chem; 2019 May; 67(17):4831-4838. PubMed ID: 30969762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and functional analysis of squalene synthase gene in tea plant Camellia sinensis.
    Fu J; Liu G; Yang M; Wang X; Chen X; Chen F; Yang Y
    Plant Physiol Biochem; 2019 Sep; 142():53-58. PubMed ID: 31272035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustainable and effective approach to recover antioxidant compounds from purple tea (Camellia sinensis var. assamica cv. Zijuan) leaves.
    de Moura C; Kabbas Junior T; Mendanha Cruz T; Boscacci Marques M; Araújo Vieira do Carmo M; Turnes Pasini Deolindo C; Daguer H; Azevedo L; Xu YQ; Granato D
    Food Res Int; 2023 Feb; 164():112402. PubMed ID: 36737984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis.
    Li Y; Wang X; Ban Q; Zhu X; Jiang C; Wei C; Bennetzen JL
    BMC Genomics; 2019 Jul; 20(1):624. PubMed ID: 31366321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and expression profiling of the auxin response factors (ARFs) in the tea plant (Camellia sinensis (L.) O. Kuntze) under various abiotic stresses.
    Xu YX; Mao J; Chen W; Qian TT; Liu SC; Hao WJ; Li CF; Chen L
    Plant Physiol Biochem; 2016 Jan; 98():46-56. PubMed ID: 26637949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the evolutionary characteristics between cultivated tea and its wild relatives using complete chloroplast genomes.
    Peng J; Zhao Y; Dong M; Liu S; Hu Z; Zhong X; Xu Z
    BMC Ecol Evol; 2021 Apr; 21(1):71. PubMed ID: 33931026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing microRNAs and their targets in different organs of Camellia sinensis var. assamica.
    Suo A; Lan Z; Lu C; Zhao Z; Pu D; Wu X; Jiang B; Zhou N; Ding H; Zhou D; Liao P; Sunkar R; Zheng Y
    Genomics; 2021 Jan; 113(1 Pt 1):159-170. PubMed ID: 33253793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide identification and expression analysis of flowering-related genes reveal putative floral induction and differentiation mechanisms in tea plant (Camellia sinensis).
    Liu Y; Hao X; Lu Q; Zhang W; Zhang H; Wang L; Yang Y; Xiao B; Wang X
    Genomics; 2020 May; 112(3):2318-2326. PubMed ID: 31923617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.