BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35290063)

  • 1. Transferable Neural Network Potential Energy Surfaces for Closed-Shell Organic Molecules: Extension to Ions.
    Jacobson LD; Stevenson JM; Ramezanghorbani F; Ghoreishi D; Leswing K; Harder ED; Abel R
    J Chem Theory Comput; 2022 Apr; 18(4):2354-2366. PubMed ID: 35290063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Four Generations of High-Dimensional Neural Network Potentials.
    Behler J
    Chem Rev; 2021 Aug; 121(16):10037-10072. PubMed ID: 33779150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Molecular Fragments to the Bulk: Development of a Neural Network Potential for MOF-5.
    Eckhoff M; Behler J
    J Chem Theory Comput; 2019 Jun; 15(6):3793-3809. PubMed ID: 31091097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Teaching a neural network to attach and detach electrons from molecules.
    Zubatyuk R; Smith JS; Nebgen BT; Tretiak S; Isayev O
    Nat Commun; 2021 Aug; 12(1):4870. PubMed ID: 34381051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost.
    Smith JS; Isayev O; Roitberg AE
    Chem Sci; 2017 Apr; 8(4):3192-3203. PubMed ID: 28507695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer.
    Ko TW; Finkler JA; Goedecker S; Behler J
    Acc Chem Res; 2021 Feb; 54(4):808-817. PubMed ID: 33513012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extending the Applicability of the ANI Deep Learning Molecular Potential to Sulfur and Halogens.
    Devereux C; Smith JS; Huddleston KK; Barros K; Zubatyuk R; Isayev O; Roitberg AE
    J Chem Theory Comput; 2020 Jul; 16(7):4192-4202. PubMed ID: 32543858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Scalable Molecular Force Field Parameterization Method Based on Density Functional Theory and Quantum-Level Machine Learning.
    Galvelis R; Doerr S; Damas JM; Harvey MJ; De Fabritiis G
    J Chem Inf Model; 2019 Aug; 59(8):3485-3493. PubMed ID: 31322877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling Zinc Complexes Using Neural Networks.
    Jin H; Merz KM
    J Chem Inf Model; 2024 Apr; 64(8):3140-3148. PubMed ID: 38587510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing ANI-2x, ANI-1ccx neural networks, force field, and DFT methods for predicting conformational potential energy of organic molecules.
    Rezaee M; Ekrami S; Hashemianzadeh SM
    Sci Rep; 2024 May; 14(1):11791. PubMed ID: 38783010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transferable Dynamic Molecular Charge Assignment Using Deep Neural Networks.
    Nebgen B; Lubbers N; Smith JS; Sifain AE; Lokhov A; Isayev O; Roitberg AE; Barros K; Tretiak S
    J Chem Theory Comput; 2018 Sep; 14(9):4687-4698. PubMed ID: 30064217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Efficient Approach to Large-Scale Ab Initio Conformational Energy Profiles of Small Molecules.
    Wang Y; Walker BD; Liu C; Ren P
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking Force Field and the ANI Neural Network Potentials for the Torsional Potential Energy Surface of Biaryl Drug Fragments.
    Lahey SJ; Thien Phuc TN; Rowley CN
    J Chem Inf Model; 2020 Dec; 60(12):6258-6268. PubMed ID: 33263401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auto3D: Automatic Generation of the Low-Energy 3D Structures with ANI Neural Network Potentials.
    Liu Z; Zubatiuk T; Roitberg A; Isayev O
    J Chem Inf Model; 2022 Nov; 62(22):5373-5382. PubMed ID: 36112860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel Multistream Training of High-Dimensional Neural Network Potentials.
    Singraber A; Morawietz T; Behler J; Dellago C
    J Chem Theory Comput; 2019 May; 15(5):3075-3092. PubMed ID: 30995035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial intelligence-enhanced quantum chemical method with broad applicability.
    Zheng P; Zubatyuk R; Wu W; Isayev O; Dral PO
    Nat Commun; 2021 Dec; 12(1):7022. PubMed ID: 34857738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward Fast and Reliable Potential Energy Surfaces for Metallic Pt Clusters by Hierarchical Delta Neural Networks.
    Sun G; Sautet P
    J Chem Theory Comput; 2019 Oct; 15(10):5614-5627. PubMed ID: 31465216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Open Force Field BespokeFit: Automating Bespoke Torsion Parametrization at Scale.
    Horton JT; Boothroyd S; Wagner J; Mitchell JA; Gokey T; Dotson DL; Behara PK; Ramaswamy VK; Mackey M; Chodera JD; Anwar J; Mobley DL; Cole DJ
    J Chem Inf Model; 2022 Nov; 62(22):5622-5633. PubMed ID: 36351167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AP-Net: An atomic-pairwise neural network for smooth and transferable interaction potentials.
    Glick ZL; Metcalf DP; Koutsoukas A; Spronk SA; Cheney DL; Sherrill CD
    J Chem Phys; 2020 Jul; 153(4):044112. PubMed ID: 32752707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.