BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35290195)

  • 1. Multi-Level Functional Connectivity Fusion Classification Framework for Brain Disease Diagnosis.
    Liang Y; Xu G
    IEEE J Biomed Health Inform; 2022 Jun; 26(6):2714-2725. PubMed ID: 35290195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia.
    Kim J; Calhoun VD; Shim E; Lee JH
    Neuroimage; 2016 Jan; 124(Pt A):127-146. PubMed ID: 25987366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Convolutional Neural Network Combined With Prototype Learning Framework for Brain Functional Network Classification of Autism Spectrum Disorder.
    Liang Y; Liu B; Zhang H
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2193-2202. PubMed ID: 34648452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EAG-RS: A Novel Explainability-Guided ROI-Selection Framework for ASD Diagnosis via Inter-Regional Relation Learning.
    Jung W; Jeon E; Kang E; Suk HI
    IEEE Trans Med Imaging; 2024 Apr; 43(4):1400-1411. PubMed ID: 38015693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical High-Order Functional Connectivity Networks and Selective Feature Fusion for MCI Classification.
    Chen X; Zhang H; Lee SW; Shen D;
    Neuroinformatics; 2017 Jul; 15(3):271-284. PubMed ID: 28555371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi feature fusion network for schizophrenia classification and abnormal brain network recognition.
    Wang C; Wang C; Ren Y; Zhang R; Ai L; Wu Y; Ran X; Wang M; Hu H; Shen J; Zhao Z; Yang Y; Ren W; Yu Y
    Brain Res Bull; 2024 Jan; 206():110848. PubMed ID: 38104673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification.
    Chen X; Zhang H; Zhang L; Shen C; Lee SW; Shen D
    Hum Brain Mapp; 2017 Oct; 38(10):5019-5034. PubMed ID: 28665045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image categorization from functional magnetic resonance imaging using functional connectivity.
    Liu C; Song S; Guo X; Zhu Z; Zhang J
    J Neurosci Methods; 2018 Nov; 309():71-80. PubMed ID: 30145172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Scale FC-Based Multi-Order GCN: A Novel Model for Predicting Individual Behavior From fMRI.
    Wen X; Cao Q; Jing B; Zhang D
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():548-558. PubMed ID: 38252573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inter-Network High-Order Functional Connectivity (IN-HOFC) and its Alteration in Patients with Mild Cognitive Impairment.
    Zhang H; Giannakopoulos P; Haller S; Lee SW; Qiu S; Shen D
    Neuroinformatics; 2019 Oct; 17(4):547-561. PubMed ID: 30739281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyper-connectivity of functional networks for brain disease diagnosis.
    Jie B; Wee CY; Shen D; Zhang D
    Med Image Anal; 2016 Aug; 32():84-100. PubMed ID: 27060621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autoencoder and restricted Boltzmann machine for transfer learning in functional magnetic resonance imaging task classification.
    Hwang J; Lustig N; Jung M; Lee JH
    Heliyon; 2023 Jul; 9(7):e18086. PubMed ID: 37519689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnosis of Autism Spectrum Disorders Using Multi-Level High-Order Functional Networks Derived From Resting-State Functional MRI.
    Zhao F; Zhang H; Rekik I; An Z; Shen D
    Front Hum Neurosci; 2018; 12():184. PubMed ID: 29867410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-order resting-state functional connectivity network for MCI classification.
    Chen X; Zhang H; Gao Y; Wee CY; Li G; Shen D;
    Hum Brain Mapp; 2016 Sep; 37(9):3282-96. PubMed ID: 27144538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of Cognitive Impairment in Adult Moyamoya Disease: A Classifier Based on High-Order Resting-State Functional Connectivity Network.
    Lei Y; Chen X; Su JB; Zhang X; Yang H; Gao XJ; Ni W; Chen L; Yu JH; Gu YX; Mao Y
    Front Neural Circuits; 2020; 14():603208. PubMed ID: 33408614
    [No Abstract]   [Full Text] [Related]  

  • 17. Hybrid High-order Functional Connectivity Networks Using Resting-state Functional MRI for Mild Cognitive Impairment Diagnosis.
    Zhang Y; Zhang H; Chen X; Lee SW; Shen D
    Sci Rep; 2017 Jul; 7(1):6530. PubMed ID: 28747782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding brain states from fMRI connectivity graphs.
    Richiardi J; Eryilmaz H; Schwartz S; Vuilleumier P; Van De Ville D
    Neuroimage; 2011 May; 56(2):616-26. PubMed ID: 20541019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accounting for temporal variability in functional magnetic resonance imaging improves prediction of intelligence.
    Li Y; Ma X; Sunderraman R; Ji S; Kundu S
    Hum Brain Mapp; 2023 Sep; 44(13):4772-4791. PubMed ID: 37466292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning based pipelines for Alzheimer's disease diagnosis: A comparative study and a novel deep-ensemble method.
    Loddo A; Buttau S; Di Ruberto C
    Comput Biol Med; 2022 Feb; 141():105032. PubMed ID: 34838263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.