These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 35290239)

  • 1. Evaluating the potential impact of energy-efficient ammonia control on the carbon footprint of a full-scale wastewater treatment plant.
    Boiocchi R; Bertanza G
    Water Sci Technol; 2022 Mar; 85(5):1673-1687. PubMed ID: 35290239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant.
    Aboobakar A; Cartmell E; Stephenson T; Jones M; Vale P; Dotro G
    Water Res; 2013 Feb; 47(2):524-34. PubMed ID: 23159006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving nutrient removal while reducing energy use at three Swiss WWTPs using advanced control.
    Rieger L; Takács I; Siegrist H
    Water Environ Res; 2012 Feb; 84(2):170-88. PubMed ID: 22515068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimizing N2O emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor.
    Rodriguez-Caballero A; Aymerich I; Marques R; Poch M; Pijuan M
    Water Res; 2015 Mar; 71():1-10. PubMed ID: 25577689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing aeration energy consumption in a large-scale membrane bioreactor: Process simulation and engineering application.
    Sun J; Liang P; Yan X; Zuo K; Xiao K; Xia J; Qiu Y; Wu Q; Wu S; Huang X; Qi M; Wen X
    Water Res; 2016 Apr; 93():205-213. PubMed ID: 26905799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant-wide modeling of a metropolitan wastewater treatment plant to reduce energy consumption and carbon footprint.
    Okan B; Erguder TH; Aksoy A
    Environ Sci Pollut Res Int; 2023 Feb; 30(6):16068-16080. PubMed ID: 36175732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreasing dietary nitrogen consumption improves wastewater treatment efficiency and carbon footprint.
    Rautiainen N; Rantanen PL; Jalava M; Mikola A
    Water Sci Technol; 2023 Apr; 87(8):1961-1968. PubMed ID: 37119166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring the aeration efficiency and carbon footprint of a medium-sized WWTP: experimental results on oxidation tank and aerobic digester.
    Caivano M; Bellandi G; Mancini IM; Masi S; Brienza R; Panariello S; Gori R; Caniani D
    Environ Technol; 2017 Mar; 38(5):629-638. PubMed ID: 27367525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ammonia-based aeration control with optimal SRT control: improved performance and lower energy consumption.
    Schraa O; Rieger L; Alex J; Miletić I
    Water Sci Technol; 2019 Jan; 79(1):63-72. PubMed ID: 30816863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of soluble and particulate substrate on the carbon and energy footprint of wastewater treatment processes.
    Gori R; Jiang LM; Sobhani R; Rosso D
    Water Res; 2011 Nov; 45(18):5858-72. PubMed ID: 21943568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential of OUR and OTR measurements for identification of activated sludge removal processes in aerated basins.
    Schuchardt A; Libra JA; Sahlmann C; Handschag J; Wiesmann U; Gnirss R
    Water Sci Technol; 2005; 52(12):141-9. PubMed ID: 16477981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N2O emissions from a one stage partial nitrification/anammox process in moving bed biofilm reactors.
    Yang J; Trela J; Plaza E; Tjus K
    Water Sci Technol; 2013; 68(1):144-52. PubMed ID: 23823550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aeration control in membrane bioreactor for sustainable environmental footprint.
    Mannina G; Cosenza A; Rebouças TF
    Bioresour Technol; 2020 Apr; 301():122734. PubMed ID: 31954967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ammonia-based feedforward and feedback aeration control in activated sludge processes.
    Rieger L; Jones RM; Dold PL; Bott CB
    Water Environ Res; 2014 Jan; 86(1):63-73. PubMed ID: 24617112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-dissolved-oxygen nitrifying systems exploit ammonia-oxidizing bacteria with unusually high yields.
    Bellucci M; Ofiteru ID; Graham DW; Head IM; Curtis TP
    Appl Environ Microbiol; 2011 Nov; 77(21):7787-96. PubMed ID: 21926211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wastewater treatment process impact on energy savings and greenhouse gas emissions.
    Mamais D; Noutsopoulos C; Dimopoulou A; Stasinakis A; Lekkas TD
    Water Sci Technol; 2015; 71(2):303-8. PubMed ID: 25633956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Experiment study on real-time controlling rules of A/O nitrogen removal process].
    Du H; Ma Y; Peng YZ; Wang BZ
    Huan Jing Ke Xue; 2005 Jul; 26(4):100-5. PubMed ID: 16212176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of carbon footprint emissions and environmental concerns of solid waste treatment and disposal techniques; case study of Malaysia.
    Malakahmad A; Abualqumboz MS; Kutty SRM; Abunama TJ
    Waste Manag; 2017 Dec; 70():282-292. PubMed ID: 28935377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring aeration-associated energy savings at a conventional water reclamation plant.
    Zhu JJ; Anderson PR
    Water Sci Technol; 2017 Oct; 76(7-8):2222-2231. PubMed ID: 29068352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrification of high strength ammonia wastewaters: comparative study of immobilisation media.
    Rostron WM; Stuckey DC; Young AA
    Water Res; 2001 Apr; 35(5):1169-78. PubMed ID: 11268837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.