These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 35290322)
1. Dual-angle rotation two-dimensional wavelet transform profilometry. Han M; Chen W Opt Lett; 2022 Mar; 47(6):1395-1398. PubMed ID: 35290322 [TBL] [Abstract][Full Text] [Related]
2. Two-dimensional complex wavelet with directional selectivity used in fringe projection profilometry. Han M; Chen W Opt Lett; 2021 Aug; 46(15):3653-3656. PubMed ID: 34329248 [TBL] [Abstract][Full Text] [Related]
3. General framework of a two-dimensional complex wavelet for fringe projection profilometry. Han M; Chen W Opt Express; 2023 Feb; 31(4):5257-5272. PubMed ID: 36823811 [TBL] [Abstract][Full Text] [Related]
4. Effective bias removal for fringe projection profilometry using the dual-tree complex wavelet transform. Ng WW; Lun DP Appl Opt; 2012 Aug; 51(24):5909-16. PubMed ID: 22907021 [TBL] [Abstract][Full Text] [Related]
5. Marker encoded fringe projection profilometry for efficient 3D model acquisition. Budianto B; Lun PK; Hsung TC Appl Opt; 2014 Nov; 53(31):7442-53. PubMed ID: 25402910 [TBL] [Abstract][Full Text] [Related]
6. Fringe pattern demodulation using the fan two-dimensional continuous wavelet transform conjugate to Shannon entropy. Elfagrich M Appl Opt; 2023 Feb; 62(5):1263-1273. PubMed ID: 36821226 [TBL] [Abstract][Full Text] [Related]
7. Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform. Gdeisat MA; Burton DR; Lalor MJ Appl Opt; 2006 Dec; 45(34):8722-32. PubMed ID: 17119568 [TBL] [Abstract][Full Text] [Related]
8. Method to eliminate the zero spectra in Fourier transform profilometry based on a cost function. Cui SL; Tian F; Li DH Appl Opt; 2012 Jun; 51(16):3194-204. PubMed ID: 22695550 [TBL] [Abstract][Full Text] [Related]
9. Adaptive carrier fringe pattern enhancement for wavelet transform profilometry through modifying intrinsic time-scale decomposition. Wang H; Miao Y; Yang H; Ye Z; Wang L Appl Opt; 2020 Jul; 59(20):6191-6202. PubMed ID: 32672767 [TBL] [Abstract][Full Text] [Related]
10. Efficient fringe image enhancement based on dual-tree complex wavelet transform. Hsung TC; Lun DP; Ng WW Appl Opt; 2011 Jul; 50(21):3973-86. PubMed ID: 21772381 [TBL] [Abstract][Full Text] [Related]
11. Combining dual-tree complex wavelets and multiresolution in iterative CT reconstruction with application to metal artifact reduction. Us D; Ruotsalainen U; Pursiainen S Biomed Eng Online; 2019 Dec; 18(1):116. PubMed ID: 31806022 [TBL] [Abstract][Full Text] [Related]
12. Dual-stage hybrid network for single-shot fringe projection profilometry based on a phase-height model. Song X; Wang L Opt Express; 2024 Jan; 32(1):891-906. PubMed ID: 38175111 [TBL] [Abstract][Full Text] [Related]
13. Multi-frequency fringe projection profilometry based on wavelet transform. Jiang C; Jia S; Dong J; Lian Q; Li D Opt Express; 2016 May; 24(11):11323-33. PubMed ID: 27410063 [TBL] [Abstract][Full Text] [Related]
14. Composite fringe projection deep learning profilometry for single-shot absolute 3D shape measurement. Li Y; Qian J; Feng S; Chen Q; Zuo C Opt Express; 2022 Jan; 30(3):3424-3442. PubMed ID: 35209601 [TBL] [Abstract][Full Text] [Related]
15. Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry. Zhong J; Weng J Appl Opt; 2004 Sep; 43(26):4993-8. PubMed ID: 15468699 [TBL] [Abstract][Full Text] [Related]
16. Parameter discretization in two-dimensional continuous wavelet transform for fast fringe pattern analysis. Ma J; Wang Z; Vo M; Luu L Appl Opt; 2011 Dec; 50(34):6399-408. PubMed ID: 22192992 [TBL] [Abstract][Full Text] [Related]
17. Super-resolution technique for dense 3D reconstruction in fringe projection profilometry. Yao P; Gai S; Da F Opt Lett; 2021 Sep; 46(18):4442-4445. PubMed ID: 34525017 [TBL] [Abstract][Full Text] [Related]
18. Optimal frequency selection for accuracy improvement in binary defocusing fringe projection profilometry. Zhu J; Feng X; Zhu C; Zhou P Appl Opt; 2022 Aug; 61(23):6897-6904. PubMed ID: 36255771 [TBL] [Abstract][Full Text] [Related]
19. Weakly Supervised Depth Estimation for 3D Imaging with Single Camera Fringe Projection Profilometry. Tan C; Song W Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475237 [TBL] [Abstract][Full Text] [Related]
20. Unsupervised deep learning for 3D reconstruction with dual-frequency fringe projection profilometry. Fan S; Liu S; Zhang X; Huang H; Liu W; Jin P Opt Express; 2021 Sep; 29(20):32547-32567. PubMed ID: 34615322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]